

Superconductivity and its applications

Summary

Carmine SENATORE

Département de Physique de la Matière Quantique Université de Genève **PART I** - From the phenomena to the phenomenological models

PART II - From the materials to the wires

PART III - From the wires to the devices

If it is a superconductor, then...

A thermodynamic state: Perfect conductor with perfect diamagnetism

The jump at T_c was predicted from thermodynamic considerations

The 1st phenomenological model: The London Theory

Drude model
$$\frac{d\vec{v}}{dt} = -\frac{e}{m} \left[\vec{E} + \frac{1}{c} \vec{v} \times \vec{h} \right] - \frac{\vec{v}}{\tau}$$

In the London model the friction term is neglected

$$\frac{d\vec{v}_s}{dt} = -\frac{e}{m} \left[\vec{E} + \frac{1}{c} \vec{v}_s \times \vec{h} \right]$$

The main achievement: it shows how the magnetic field diffuses in a superconductor

A further step: the Ginzburg-Landau Theory

In the London model the superfluid density n_s does not depend on the position This is the main new ingredient of the G-L theory: $n_s(\vec{r}) = |\psi(\vec{r})|^2$

The free energy of a superconductor is written as:

 $F_s = F_n + \text{Condensation energy} + \text{Kinetic energy} + \text{Field energy}$

$$F_{s}(\vec{r},T) = F_{N}(\vec{r},T) + \alpha |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} + \frac{1}{2m^{*}} \left(-i\hbar \vec{\nabla} - \frac{e^{*}}{c} \vec{a} \right) \psi \right|^{2} + \frac{h^{2}}{8\pi}$$

The correct predictions of the models are

- Two characteristic lengths: λ and ξ
- Two types of superconductors
- Flux quantization and vortices

Ginzburg-Landau parameter $\kappa = \frac{\lambda}{\xi}$

Type-I and Type-II superconductors

Type-I superconductor

 $\kappa \leq 1$ *At a domain wall* $\Delta E = A \frac{H_c^2}{8\pi} (\xi - \lambda) > 0$

Laminar intermediate state

Type-II superconductor

 $H_{c1} < H < H_{c2}$

Mixed state

Type-II superconductors: critical fields

Lower critical field

$$H_{c1} = \frac{\Phi_0}{4\pi\lambda^2} \ln \kappa = \frac{H_c}{\sqrt{2}\kappa} \ln \kappa$$

Upper critical field

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2} = \sqrt{2}\kappa H_c$$

The structure of the vortex lattice

In a type-II superconductor, magnetic flux penetrates in the form of quantized vortices

 $\Phi_{\mathbf{0}} = \frac{hc}{2e}$

 a_{Δ}

Vortex motion and dissipation

1) In the presence of a current, vortices experience a force

- *3)* An array of defects with appropriate dimensions and distribution may impede vortex motion
- 4) There is no dissipation if the force on the vortices does not exceed the pinning force $F_p = J_c \times B$

The critical state is a metastable state

Magnetization relaxes with a time-log law at $T \neq 0$

Superconducting wires are multifilamentary. WHY ?

1st reason: To reduce hysteretic losses

Superconducting wires are multifilamentary. WHY ?

2nd reason: To reduce flux jumps

In the adiabatic approximation

If ΔQ_{ext} is the initial perturbation, the heat balance for the slab is $\Delta Q_{ext} + \frac{\mu_0 J_c a^2}{3 (T_c - T_{op})} \Delta T = c \Delta T$

And thus the effective specific heat is

$$c_{eff} = \frac{\Delta Q_{ext}}{\Delta T} = c - \frac{\mu_0 J_c^2 a^2}{3 (T_c - T_{op})}$$

 c_{eff} can become zero \Rightarrow The solution is to reduce the size of the filaments

PART I - From the phenomena to the phenomenological models

PART II - From the materials to the wires

PART III - From the wires to the devices

From superconducting materials...

...to technical superconductors NbTi

From superconducting materials...

...to technical superconductors

The six steps

- 1. Discovery
- 2. Improvement of J_c performance
- 3. Co-processing with matrix metal
- 4. Multifilament form
- 5. *I_c* >100 A in length > 1 km
- 6. Thermal and mechanical stabilization

LTS materials for applications

Key parameter for J_c optimization

NbTi $\rightarrow \alpha$ -Ti precipitates acts as pinning centers

 $Nb_{3}Sn \rightarrow Grain morphology (pinning) and composition/doping (B_{c2})$

 $MgB_2 \rightarrow Doping (B_{c2})$ and connectivity (densification)

HTS materials for applications

Copper oxides with highly anisotropic structures, <u>texturing</u> (grain orientation) is required in technical superconductors

Produced by Powder-In-Tube method $T_{c}[K]$ texture Aq matrix material Tape geometry to achieve c-axis texturing I, depends on the magnetic field orientation **Bi2223** 110 c-axis Produced by Powder-In-Tube method c-axis Aq matrix material **Bi2212 91** (radial) Round wire, spontaneous radial texturing of the c-axis Isotropic properties of I_c **92** biaxial Y123 **Coated conductors** Y123 layer deposited on a metallic substrate Texturing along c and in the ab plane I_c depends on the magnetic field orientation Various fabrication processes

PART I - From the phenomena to the phenomenological models

PART II - From the materials to the wires

PART III - From the wires to the devices

Basic design and operation issues of a superconducting device

Superconducting magnets, field shapes and winding configurations

- Solenoids (NMR, MRI and laboratory magnets)
- Transverse fields (particle accelerators)
- Toroids (fusion magnets)

From the wire to the magnet

Superconducting magnet

Superconducting wire

Reinforcing elements and structure

Insulation and filling materials

(Coolant)

Superconducting magnets, field shapes and winding configurations Solenoids (NMR, MRI and laboratory magnets)

Superconducting magnets, field shapes and winding configurations Transverse fields (particle accelerators)

$$B_y = -\mu_0 \frac{Ja}{2} \qquad B_x = 0$$

Basic design and operation issues of a superconducting device

- Superconducting magnets and mechanical stability
- Superconducting magnets and thermal stability

Electromechanical properties of superconducting wires

Stresses in superconductors arise from

Mismatch in thermal contraction within the composite

Magnetic forces within the

magnet windings

Nb₃Sn wires under axial stress Bronze Route, Internal Sn and PIT: a comparison

Technology	σ_{irr}
Bronze Route	330 MPa
Internal Sn	210 MPa
Powder-In-Tube	120 MPa

MAXIMUM OF I_c

The maximum of the critical current occurs when the cubic cell is restored (the deviatoric stress is minimum)

IRREVERSIBLE BEHAVIOUR

The irreversible limit (filament breakage) is related to the microstructure of the superconducting filaments, that depends on the fabrication process

Thermal properties of superconducting wires

A thermal disturbance Q_{in} induces a temperature rise above T_c over a length I

The minimum length needed for this normal zone to propagate (for heat generation to exceed cooling) is defined as the minimum propagation zone I_{MPZ}

$$I_{MPZ} = \frac{1}{J} \sqrt{\frac{2\kappa}{\rho}} \Big(T_{cs} - T_{op} \Big)$$

The energy necessary to form a propagating zone is $MQE = A \int_{I_{MPZ}} dz \int_{T_{op}}^{T_{cs}} dT C(T)$

The propagation velocity of the normal zone is $v_{NZ} =$

$$= \frac{J}{C} \sqrt{\frac{\rho \kappa}{T_{cs} - T_{op}}}$$

$$c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x} \right) + \frac{\rho J^2}{Joule Heating} + \frac{\rho J^2}{Thermal disturbance}$$

Thermal properties of superconducting wires

Once a non-recovering normal zone is formed, it is desirable to make the normal-zone propagation (NZP) velocity "fast", to limit the hot spot temperature

MQE and v_{NZ} depend on the operation conditions and have to be engineered through the heat capacity C, the thermal conductivity κ and the electrical resistivity ρ of the composite

Examples

v_{NZ} is 20 m/s for NbTi @ 4K, 4T and 800 A/mm² v_{NZ} is 10⁻² m/s for Y123 @ 77K, s.f. and 100 A/mm²

How to protect a magnet in case of quench Active Protection Technique: Detect-and-Dump

A simple protection circuit with a switch S and external dump resistor R_D When the start of a quench is detected, S opens and the current decays through R_D If we make R_D larger than the internal quench resistance, it will dominate the current decay giving

$$I = I_{op} e^{-R_D t/L} = I_{op} e^{-t/t_D}$$

What we have learned

- 1. What a superconductor is
- 2. How to make a wire out of a superconductor
- 3. How to design a superconducting magnet
- 4. How to determine the effects of magnetic stresses on a superconducting wire
- 5. How to protect a magnet in case of quench