

Superconductivity and its applications

Lecture 9

Carmine SENATORE

Previously, in lecture 8 - HTS materials for applications

Bi2212

5.415

5.421

30.880

2

91

Bi2223

5.413

5.421

37.010

3

110

Previously, in lecture 8 HTS materials for applications

Copper oxides with highly anisotropic structures, <u>texturing</u> (grain orientation) is required in technical superconductors

	<i>T_c</i> [K]	texture		Produced by Powder-In-Tube method Ag matrix material Tape geometry to achieve c-axis texturing I _c depends on the magnetic field orientation Produced by Powder-In-Tube method Ag matrix material Round wire, spontaneous radial texturing of the c-axis
Bi2223	110	c-axis	-2322200700000	
Bi2212	91	c-axis (radial)		
				Isotropic properties of I

Previously, in lecture 8 Bi2212 & Bi 2223 conductor technology

Bi2223 conductors are multifilamentary tapes

Bi2212 conductors are multifilamentary *round* **wires**

Previously, in lecture 8 - HTS materials for applications

Grain Boundaries in Y123

Grain boundaries in Y123

Hilgenkamp and Mannhart, RMP 74 (2002) 485

For angles above 8-10°, the J_c^{GB} is reduced by a factor >100 !!

In order to get high J_c in the conductor, the c-axis texturing is not enough

We do need also texturing in the ab plane

HTS conductors: texturing in Bi2223 and Y123

Both in Bi2223 and Y123, c-axis texturing is required due to the anisotropy of the properties //ab and //c

Because of the J_c dependence on the GB angle in the ab plane, also inplane texturing is required for Y123

This biaxial texture is required over kilometers!!

Looking from above

The template is a metallic substrate coated with a multifunctional oxide barrier

Biaxial texturing – within < 3° – is obtained

but with some also drawbacks:

- pronounced anisotropic behaviour
- complex and expensive manufacturing process

Presently produced by Sequerconductor Fujikura SUNAN SuperOx SuperPower

Alternative approaches for growing epitaxial REBCO on flexible metallic substrates in km-lengths

REBCO conductor technology: RABiTS template

RABiTS : Rolling-Assisted, Biaxially Textured Substrates

- [100] cube texture is created in the NiW substrate by a rolling-and-recrystallization process
- Several epitaxial buffer layers are needed to provide a lattice matched surface for growing the HTS layer

REBCO conductor technology: IBAD template

IBAD : Ion Beam Assisted Deposition

- A biaxially textured MgO layer is grown on a polycrystalline Hastelloy tape
- Several other buffer layers are needed to provide a lattice matched surface for growing the HTS layer

Performance overview: $J_c(s.f.,77K)$ vs. $J_c^{\perp}(19T,4.2K)$

Artificial pinning to enhance REBCO performance

Introduction of artificial nano-defects to control vortex pinning, reduce anisotropy and enhance performance

On the BZO nanorods morphology

Selvamanickam el al., APL <u>106</u> (2015) 032601

Average BZO size 5.5 nm Average spacing ~ 12 nm Density = 6.9 × 10¹¹ cm⁻²

Engineering vs. superconducting layer performance

REBCO and Bi2223 tapes retain the anisotropic properties of the superconductor Data shown here correspond to the unfavorable orientation wrt the field The in-field properties of **Bi2212** wires are fully isotropic

Industrial superconductors: J_e Comparison

http://fs.magnet.fsu.edu/~lee/plot/plot.htm

Industrial superconductors React&Wind vs Wind&React

React&WindWind&ReactNbTiNb_3Snex situ MgB2in situ MgB2Bi2223IMD MgB2Y123Bi2212

How to choose the superconductor: <u>Performance vs Cost</u>

Adapted from B. Seeber, IEEE TASC <u>28</u> (2018) 6900305

Superconductor Technology

Basic design and operation issues of a superconducting device

Superconducting magnets, field shapes and winding configurations

- Solenoids (NMR, MRI and laboratory magnets)
- Transverse fields (particle accelerators)
- Toroids (fusion magnets)

Solenoids: concepts and design

Biot-Savart law
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_C \frac{|d\vec{l} \times \vec{r}|}{|r^3|}$$

In the case of a solenoid

$$B_0 = JaF(\alpha,\beta)$$

where

$$J=\frac{NI}{2I(b-a)}^*$$

$$F(\alpha,\beta) = \mu_0 \beta \ln \left[\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}} \right]$$

with
$$\alpha = \frac{\beta}{a}$$
 and $\beta = \frac{\gamma}{a}$

* Overall current density, normalized to the winding section including wire matrix and insulation

Coil geometry and shape factor

Maximum field on the winding

α and β have an influence on the field uniformity

At the exercise session: how to choose α and β when designing a solenoid

Homogeneity of the field along z

How to calculate the variation of field along the axis of a solenoid

$$B_{z} = \frac{1}{2} JaF(\alpha, \beta_{1}) + \frac{1}{2} JaF(\alpha, \beta_{2})$$
$$\beta_{1} = \frac{l+z}{a} \qquad \beta_{2} = \frac{l-z}{a}$$

Homogeneity of the field along z

By suitable adjustment of coil shape, one may reduce an error coefficient to zero

This notched solenoid is of sixth order

 $E_2 = E_4 = 0$

ZERO CURRENT DENSITY NOTCH

A 32 T all-superconducting magnet at NHMFL, US

32 TESLA SUPERCONDUCTING MAGNET

General guidelines for magnet design

Subdivide the winding into a number of concentric sections to improve the efficiency of superconductor utilization

All sections take the same current, but each section has its own J, α and β

Each section operates at the maximum current density allowed by the local field level

Bibliography

Rogalla & Kes 100 Years of Superconductivity Chapter 11 Section 5 (Y123)

Wilson Superconducting Magnets Chapter 3

Papers cited in the slides