

Superconductivity and its applications

Lecture 8

Carmine SENATORE

Previously, in lecture 7

	<i>T_c</i> [K]	<i>B</i> _{<i>c</i>2} [T]
NbTi	9.8	10.5
Nb ₃ Sn	18.0	30+
MgB ₂	39.0	10-60

Alloy Easy to produce in multifilamentary wires Wires does not need reaction heat treatment

Intermetallic compounds Three different fabrication technologies Wires must be reacted after fabrication

Key parameter for J_c optimization

NbTi $\rightarrow \alpha$ -Ti precipitates acts as pinning centers

 $Nb_{3}Sn \rightarrow Grain morphology (pinning) and composition/doping (B_{c2})$

 $MgB_2 \rightarrow Doping (B_{c2})$ and connectivity (densification)

Previously, in lecture 7

*MgB*₂ *wires: fabrication by powder metallurgy*

Monofilamentary wire

Previously, in lecture 7 Relevant HTS families

A quick introduction to the HTS phase diagram

Band (Bloch-Wilson) insulator

HTS are copper oxides The undoped parent compounds are antiferromagnetic Mott insulators

A quick introduction to the HTS phase diagram

Hole doping p

Only one electron per site but the strong Coulomb repulsion between the electrons impedes their flow

On the top of that the antiferromagnetic interaction

A quick introduction to the HTS phase diagram

Layered structure and Anisotropy

Charge carriers have effective masses that depend on the crystallographic orientation

 $\frac{m_c}{m_{ab}}$ ranges between 50 and 10'000 in cuprates

The superconductor lengths depend on the carrier mass: $\xi \propto \frac{1}{\sqrt{m}}$ and $\lambda \propto \sqrt{m}$

Anisotropy of the critical fields B_{c1} and B_{c2}

The superconductor anisotropy parameter

m	m _c	λ_{c}	ξab		Bi2212	Bi2223	Y123
$\gamma = \sqrt{2}$	m _{ab} =	$=\frac{1}{\lambda_{ab}}=$	$=\frac{\xi_c}{\xi_c}$	γ	~150	~30	~7

The BiSrCaCuO (BSCCO) family

	Bi2201	Bi2212	Bi2223
<i>a</i> [Å]	5.362	5.415	5.413
<i>b</i> [Å]	5.374	5.421	5.421
<i>c</i> [Å]	24.622	30.880	37.010
# of adiacent CuO ₂ planes	1	2	3
<i>T_c</i> [K]	15	91	110
<i>B</i> _{c2} ^{//ab} [Τ]	15-20	>100	>100
Anisotropy γ	>150	150	30
γ	$=\sqrt{\frac{m_c}{m_{ab}}}=$	$\frac{B_{c1}^{ab}}{B_{c1}^c} = \frac{B_{c2}^c}{B_{c2}^{ab}}$	

These 2 parameters are correlated

Bi2223 conductor technology Powder-in-Tube fabrication process (PIT)

Hikata et al., Jap. J. App. Phys. <u>28</u> (1989) 82

Bi2223 conductor technology Precursor powders preparation

- 1. Mixture of $CuC_2O_4 \cdot 2.5H_2O$, $Bi_2(C_2O_4)+H_2O$, PbC_2O_4 , $CaC_2O_4 \cdot H_2O$ and $SrC_2O_4 \cdot 2.5H_2O$
- 2. Repeated calcinations to decompose oxalates and eliminate carbon and water (thermal treatment in air at 300-500°C for 1 to 5 hours)
- 3. Multiple steps of hand grinding and reaction at 700-800°C in air

1, 2 and 3 are necessary to eliminate the carbon impurities, obtain Bi2212 (!) as main phase and limit the grain size to about 2-5 μ m

The result is a mixture of Bi2212 (75-80%), Bi2201 (~5%), Ca₂PbO₄ (10%) and CuO

Overall composition close to Bi₂Sr₂Ca₂Cu₃O₁₀

Bi2223 conductor technology

Ag is permeable to O_2

Platelet-like Bi2212 grains are aligned with parallel c-axis (texturing) during the wire-to-tape (rolling) deformation

Reaction also leads to the CO_2 formation in the filaments \Rightarrow bubbles \Rightarrow de-densification

Bi2223 conductor technology

Ag is permeable to O_2

Bi2223 tapes: evolution of I_c vs. year (77K, self-field)

Bi2223 tapes: engineering critical current density J_e

http://fs.magnet.fsu.edu/~lee/plot/plot.htm

Bi2212 conductor technology

Heine et al., APL <u>55</u> (1989) 2441 Enomoto et al., Jap. J. App. Phys. <u>29</u> (1990) L447

AEC

CF

Bi2212 conductor technology

Heine et al., APL <u>55</u> (1989) 2441 Enomoto et al., Jap. J. App. Phys. <u>29</u> (1990) L447

Bi2212 conductors are multifilamentary *round* **wires**

Bi2212 Powder-In-Tube round wires: Some facts

Ag

- The intrinsic anisotropy of Bi2212 is higher compared to Bi2223
- However, it is not necessary to deform the Bi2212 conductors to flat tapes in order to get high J_c

0.8 mm Filling factor is ~25-30%

- Melting and recrystallization during the heat treatment determines a gradual rotation of the c-axis of grains around the wire axis
- The advantage is that Bi2212 conductors do not have preferential orientation with respect to the magnetic field
- The disadvantage is that Bi2212 can usefully operate only up to ~20K, while Bi2223 can operate at 77K, s.f.

Bi2212: Powder-In-Tube round wires Filament structure

Large bubbles form on melting and holding at T_{max} during the heat treatment

Bubbles can be partially filled on resolidification and Bi2212 reformation, but many voids remain

F. Kametani et al., SuST 24 (2011) 075009

How do we get high J_c in Bi2212 wires ? The "secret" of its recent success

OVERPRESSURE (up to 100 bar) during the heat treatment prevents the formation of bubbles

To increase the current carrying cross section

Larbalestier et al., Nat. Mat. <u>13</u> (2014) 375

Bi2212: reaction in overpressure (OP) Enhancement of J_c: 2500 A/mm² at 20 T and 4.2 K

Reaction in OP is very effective to reduce porosity and thus raise J_c

Related papers:

D. Larbalestier et al., Nat. Mat. <u>13</u> (2014) 375 J. Jiang et al., IEEE TAS 23 (2013) 6400206 J. Jiang et al., SuST 24 (2011) 082001

$YBCO - Y123 - YBa_2Cu_3O_{7-x}$: Some facts

- Discovered by C. P. Chu soon after Bednorz&Müller LaBaCuO
- 1st material with T_c > 77K
- SC @ 92K not only with Y, but with many RE

	Y123	
<i>a</i> [Å]	3.8227	
<i>b</i> [Å]	3.8872	
<i>c</i> [Å]	11.680	
# of adjacent CuO ₂ planes	2	
<i>T_c</i> [K]	92	
B _{c2} ^{//ab} [T]	>100	
anisotropy γ	7-8	$\gamma = \sqrt{\frac{m_c}{m_c}} =$
		$\mathbf{N} \boldsymbol{m}_{ab}$

 B_{c2}^{ab}

$$\frac{b}{a} \approx 1.001$$
 in BSCCO, whereas $\frac{b}{a} \approx 1.02$ in YBCO

Bibliography

Rogalla & Kes 100 Years of Superconductivity Chapter 11 Section 4 (Bi2223 & Bi2212)

Fosshein & Sudbø Superconductivity: Physics and Applications Chapter 2

Papers cited in the slides