

Superconductivity and its applications

Lecture 7

Carmine SENATORE

Previously, in lecture 6 Industrial fabrication of Nb₃Sn wires

Three technologies have been developed at industrial scale

• Bronze route Sn source = CuSn bronze

• Internal Sn diffusion Sn source = Sn rod

Powder in tube
 Sn source = NbSn₂ powders

Previously, in lecture 6 Critical current density vs. magnetic field

Best performance achieved so far in industrial wires

T. Boutboul et al., IEEE TASC <u>19</u> (2009) 2564 J. Parrell et al., AIP Conf. Proc. <u>711</u> (2004) 369 V. Abächerli et al., IEEE TASC <u>17</u> (2007) 2564

Previously, in lecture 6 Microstrycture of the A15 phase after reaction Bronge route Son Internal Sn Powder-In-Tube

Subelement size ~50 μm Filament size ~50 μm

High Sn content & appropriate Ta/Ti doping to get high B_{c2} and thus high in-field J_c Also microstructure is directly related to the J_c performance Grain boundaries act as the main vortex pinning centers Small grain size implies high grain boundary density and thus high J_c

Previously, in lecture 6 Microstructure of the A15 phase after reaction Internal Sn **Bronze route**

Filament size ~5 μm

Outer region Equiaxed grains ~ 150 nm 21-25 at.% Sn

Inner region Columnar grains ~ 400 nm 18-21 at.% Sn

Subelement size ~50 µm

Almost everywhere Fine grains ~ 150 nm 24-25 at.% Sn

Filament size ~50 µm

Outer region Fine grains ~ 150 nm 23-24 at.% Sn

Inner region Large grains ~ 1 μm 25 at.% Sn

Nb diffusion barrier

Powder-In-Tube

MgB_{2} : the LTS with the highest T_{c}

Table 9.2 Basic physical properties of the superconductor MgB₂. Some parameters are anisotropic, with only average values listed here.

Superconducting transition temperature T _c	39K*
Coherence length ξ_0	5 nm*
Penetration depth λ	140 nm*
Ginzburg-Landau parameter κ	$\cong 25$
electron mean free path ℓ	$\cong 60 \mathrm{nm}^*$
Residual resistivity ratio RRR = $\rho(300K)/\rho(42K)$	$\cong 20$
Debye temperature $\Theta_{\rm D}$	340K
Fermi surface electron velocity V _F	$4.8 \times 10^5 \text{ m/sec}^*$
Isotope effect constant α	0.32
Upper critical field B_{c2} , clean sample $(\ell \gg \xi_0)$	16T*
dirty sample $(\ell \ll \xi_0)$	30T*
Irreversibility field B _{irr} , clean sample	7T*
dirty sample	15T*
Thermodynamic critical field B _c	0.43T
Lower critical field B _{cl}	30mT

Akimitsu et al., Nature 410 (2001)63

- Superconductivity unespectedly discovered in 2001
- The material was known since 1957 R.M. Swift, D. White, J. Am. Soc. 79 (1957) 354

- Intermetallic compound with very high T_c
- Layered structure: alternate layers of Mg and B
- Anisotropic properties: B_{c2} // a is different from B_{c2} // c

What is special with MgB₂?

- Multiple bands are crossing the Fermi surface
- 2D σ -band originates within the B planes

- 3D π-band originates "between" the B planes (boron p_z orbital hybridization)
- Superconductivity arises simoultaneously in the two bands

MgB₂ is a kind of "2 superconductors in 1"

$$T_{c} \text{ is surprisingly (?) high} \qquad T_{c} = 1.14 \omega_{ph} \exp\left(\frac{-1}{N(0)V}\right)$$

$$MgB_{2} \ \Theta_{D} = 800 \text{ K}$$

$$Nb_{3}Sn \ \Theta_{D} = 230 \text{ K}$$

$$MgB_{2} \ \gamma = 2.5 \text{ mJ/mol } K^{2}$$

$$Nb_{3}Sn \ \gamma = 52 \text{ mJ/mol } K^{2}$$

MgB₂ : Upper critical field

Substitution of B by C leads to enhanced electrical resistivity ρ_n and thus of $B_{c2} \propto \gamma \rho_n T_c$ Vanishing two-band character is observed with increasing C content

V. Braccini et al., PRB 71 (2005) 012504

Other attempts to raise B_{c2}

Many dopants have been tested to enhance B_{c2} and J_{c}

Nitrides Borides Silicides	Carbon and carbon inorganics	Metal oxides	Metallic elements	Organic compounds
Si ₃ N ₄ [46–48] WB [49] ZrB ₂ [5, 44] TiB ₂ [5] NbB ₂ [5] CaB ₆ [50] WSi ₂ [51–53] ZrSi ₂ [51, 52]	C nanotubes [54–57] Nanodiamond [57–59] TiC [60, 61] SiC [38, 42, 62–65] B ₄ C [40, 66, 67] Na ₂ CO ₃ [68]	$\begin{array}{c} Dy_2O_3 \ [69]\\ HoO_2 \ [70]\\ Al_2O_3 \ [71]\\ MgO \ [45]\\ TiO_2 \ [72]\\ Pr_6O_{11} \ [73]\\ SiO_2 \ [74] \end{array}$	Ti [75–77] Zr [77] Mo [78] Fe [79] Co [80] Ni [80] Cu [81] Ag [82] Al [83] Si [84] La [85]	Sugar [86] Malic acid [87] Maleic anhydride [41] Paraffin [88] Toluene [89] Ethanol [89] Acetone [89] Tartaric acid [90] Ethyltoluene [91]

Table 1. List of dopants added to MgB₂.

Industrial fabrication of MgB₂ wires

Three technologies have been developed at industrial scale

 ex-situ Powder-In-Tube precursors: prereacted MgB₂ powders A heat treatment of the wire at 900°C for <60' is required to sinter the MgB₂ powders

 in-situ Powder-In-Tube _____ precursors: Mg + B powders

A heat treatment of the wire at 650°C for 1-4 hrs is required to react the precursors and form the MgB₂ superconducting phase

R. Flükiger et al., Physica C 387 (2003) 419 G. Giunchi et al., SuST 16 (2003) 285 J.M. Hur et al., SuST 21 (2008) 032001

internal Mg diffusion (IMD) _________
 precursors: Mg rod + B powders

MgB₂ wires: fabrication by powder metallurgy

Ways for enhancing J_c of MgB₂ wires

in-situ MgB₂ *wire cross section*

Ways for enhancing J_c of MgB₂ wires

Factors affecting the critical current density J_c

Low connectivity in MgB₂ wires is consequence of the low density of the precursors powders in the metallic tube, necessary to allow the deformation in the fabrication process

*In in-situ wires, the reaction of Mg and B to form MgB*₂ *is accompanied by a volume contraction (and thus formation of pores)*

Ways for enhancing J_c of MgB₂ wires

in-situ MgB₂ wire cross section

The substitution of B by C increases B_{c2} and thus the in-field J_c

Cold High Pressure Densification

A new industrial wire densification process developed at UNIGE

*Fe/MgB*₂ wire

<u>as drawn</u>

Filament density vs Pressure

Left scale: relative density of unreacted (Mg+2B) mixture

Right scale: relative mass density of reacted MgB₂ filaments

Theoretical MgB₂ density 2.61 g/cm³ (volume contraction)

Enhancement of B_{c2} & Improvement of Connectivity

Square wire without Densification

after Cold High Pressure Densification

M.S.A. Hossain et al., SuST 24 (2011) 075013 CS et al., IEEE TAS 21 (2011) 2680

40 t precision press

horizontal 16 t hydraulic press

Still margin to improve MgB₂ wire performance

Envisaged applications of MgB₂ at T > 4.2K

Applications of MgB₂ at 20+ K

- Cryogen-free open MRI for whole body scan
- Cryogen-free ≥ 200MHz NMR magnets (≥ 4.7 T)
- High T_c links for the LHC machine
- Wind turbine / eolic generators \geq 10 MW

The engineering critical current density J_e

http://fs.magnet.fsu.edu/~lee/plot/plot.htm

Towards the high-T_c cuprate superconductors

Matthias' Rules

- 0. Valence number per atom between 2 and 8
- 1. Seek high symmetry
- 2. Seek peaks in density of state
- 3. Stay away from oxygen
- 4. Stay away from magnetism
- 5. Stay away from insulators
- B. Matthias et al., RMP <u>35</u> (1963) 1

Ti-O pyramids

Superconductivity in perovskite oxides

ABX₃ structure, an example SrTiO_{3- δ} with T_c \approx 1 K

In the 1980's Bednorz and Müller were looking for strong electron-phonon interactions in oxides

In particular, they investigated the 2 systems

La-Ni-O

La-Cu-O

1986: Superconductivity in $La_{2-x}Ba_xCuO$ at $T_c \approx 30K$

Z. Phys. B - Condensed Matter 64, 189-193 (1986)

Possible High T_c Superconductivity in the Ba-La-Cu-O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

The key feature of HTS superconductivity is related to the Cu-O pyramids

And only few months later...

VOLUME 58, NUMBER 9

PHYSICAL REVIEW LETTERS

Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure

M. K. Wu, J. R. Ashburn, and C. J. Torng Department of Physics, University of Alabama, Huntsville, Alabama 35899

and

P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu^(a)

Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77004 (Received 6 February 1987; Revised manuscript received 18 February 1987)

A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously observed both resistively and magnetically in a new Y-Ba-Cu-O compound system at ambient pressure. An estimated upper critical field $H_{c2}(0)$ between 80 and 180 T was obtained.

in a simple liquid-nitrogen Dewar.

Relevant HTS families

Bibliography

Rogalla & Kes 100 Years of Superconductivity Chapter 3 Section 7 Chapter 11 Section 6 (MgB₂)

Fosshein & Sudbø Superconductivity: Physics and Applications Chapter 2

Papers cited in the slides