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Previously, in lecture 4

1) In the presence of a current, vortices experience a force
and vortex motion (flux flow) induces dissipation 
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2) At T=0 and J≤Jc(B,T) an array of pinning centers may impede 
vortex motion (no dissipation)

3) In a wire the subdivision of the superconductor in fine filaments 
is required to reduce hysteretic losses M
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Previously, in lecture 4

4) E-J relation for a superconductor in the mixed state at T = 0: 
transition from critical state to flux flow
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5) Flux motion is thermally activated at T  0
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Determination of the pinning energy from magnetic 

relaxation experiments
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The relaxation rate is inversely proportional to U0

Measuring S as a function of B and T, we have an experimental access 
to 



Thermal activation and E-J curves
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1The Anderson-Kim model dependence                            holds in the case of strong 

pinning (extended defects). And the E-J curve has the following expression

Other U(J) dependencies are theoretically predicted and experimentally observed when 

the elastic interactions among vortices cannot be neglected
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The one that is most often used is the “logarithmic barrier”
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Experimental V-I curves
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• The critical current Ic is defined as the current corresponding to E = 0.1V/cm 

• The n-value is an indication of the pinning strength, but also of the homogeneity of 

the wire. Higher the n-value, better the pinning 

nE I

The slope is n = U0/kBT

The two parameters that define a superconducting wire:   



POWER SUPPLY

B

Persistent mode operation in a magnet

MRI and NMR magnets operate in persistent mode, 

without using a power supply   

How does it work?   

superconducting switch

A high n-value (low magnetic relaxation) is necessary to 

operate in persistent mode   



Persistent mode operation in a magnet
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At the operation, the drift of the field is 10 ppb/hour

The field is reduced by half in ~6’000 years !!    



Flux jumps and Thermal instabilities

T > 0  Jc < 0
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Flux jumps and Thermal instabilities
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Let’s suppose a linear decrease of Jc with temperature
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Flux jumps and Thermal instabilities

Let’s suppose a linear decrease of Jc with temperature
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Because of the energy stored in the current, the effective specific heat is 
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ceff can become zero  ultimate thermal catastrophe !!



Flux jumps and Thermal instabilities

The stability condition is 
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A superconducting wire must be designed in such a way that 

And this demands the subdivision of the superconductor in fine filaments
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Flux jumps and Thermal instabilities
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Multifilamentary wires, coupling and twisting

If the interfilament matrix resistivity is 

too low, filaments are coupled. Again

• Losses when field is varied

• Flux jumps

The solution is TWISTING !!



Multifilamentary wires, coupling and twisting
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Once the electric field is known, the current density  Jn in the normal metal is given by Jn = Ex /n

The current flowing from one superconducting slab to the other over half the conductor height is 
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NB The current is defined per unit length in the z-direction, the slab is infinite in z



Multifilamentary wires, coupling and twisting

n

n

B 
I






2
0

2

The current flowing from one 
superconducting slab to the other is

If the two superconducting slabs are fully 
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Superconductors History
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From superconducting materials…

…to technical superconductors

1. Superconducting ? 10’000

2. Tc > 4.2K & Bc2 > 10T ? 100

3. Jc > 1000 A/mm2 ? ~10



From superconducting materials…

…to technical superconductors

1. Discovery

2. Improvement of Jc performance

3. Co-processing with matrix metal

The six steps

4. Multifilament form

5. Ic > 100 A in length > 1 km

6. Thermal and mechanical stabilization



Superconducting elements

SC @ ambient pressure
SC @ high pressure



The cookbook for new superconductors before 1986

B. Matthias et al., RMP 35 (1963) 1

Matthias’ Rules

0. Valence number per atom between 2 and 8

1. Seek high symmetry

2. Seek peaks in density of state

3. Stay away from oxygen

4. Stay away from magnetism

5. Stay away from insulators

from a compilation of superconducting elements, 
binary compounds and solid solutions 

Favorable valance numbers: 3, 4.7, 6.9

Cubic is better 

BCS, PR 108 (1957) 1175 
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Almost all superconductors discovered 
after 1980 do not follow these rules !!

Record Tc = 23.2 K in Nb3Ge

HTS are copper oxides
The undoped parent compounds are antiferromagnetic Mott insulators



Superconducting alloys and intermetallics

• An alloy is a solid solution or mixture in which atoms are
randomly distributed on the lattice sites

• An intermetallic compound contains definite ratios of
atoms that are crystallographically ordered. There is a unit
cell that replicates itself throughout the space to generate
the lattice



Superconducting alloys



NbTi : the King of the Hill

• Enabling technology for the large 
diffusion of MRI (a 4’000 M€ market!)

• 1200+ tonnes of NbTi in LHC



Nb47wt%Ti : How to get high Jc

-Ti precipitates are adjusted to the proper dimensions in order to 
pin vortices

-Ti  hcp
-Ti  bcc



Introduction to Nb3Sn

Nb3Sn is the prototype of A15 superconductors

A15 are intermetallic compounds with A3B formula

B.T. Matthias et al., PR 95 (1954) 1435

Nb

Sn



Nb3Sn : the Superconductor for high fields (today) 

Nb3+xSn1-x is superconducting also when 
deviates from stoichiometry

A. Godeke, SuST 19 (2006) R68

Tc [K] Bc2 [T]

Nb3Sn 18.0 30+
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