

Superconductivity and its applications

Lecture 5

Carmine SENATORE

Previously, in lecture 4

1) In the presence of a current, vortices experience a force $F = J_{ext} \times \frac{B}{c}$ and vortex motion (flux flow) induces dissipation

$$\rho_{ff} = \rho_n \frac{B}{B_{c2}}$$

- At T=0 and J≤J_c(B,T) an array of pinning centers may impede vortex motion (no dissipation)
- 3) In a wire the subdivision of the superconductor in fine filaments is required to reduce hysteretic losses м↑

Previously, in lecture 4

4) E-J relation for a superconductor in the mixed state at T = 0: transition from critical state to flux flow

5) Flux motion is thermally activated at $T \neq 0$

Determination of the pinning energy from magnetic relaxation experiments $M(t) = M_0 \left[1 - \frac{k_B T}{U_0} ln \left(\frac{t}{t_0} \right) \right]$

The relaxation rate $S = -\frac{1}{M_0} \frac{dM}{d \ln t} = \frac{k_B T}{U_0}$ is inversely proportional to U_0

Measuring S as a function of B and T, we have an experimental access to $U_0 = U_0(B,T)$

Thermal activation and E-J curves

The Anderson-Kim model dependence $U = U_0 \left(1 - \frac{J}{J_0} \right)$ holds in the case of strong

pinning (extended defects). And the E-J curve has the following expression

$$\boldsymbol{E} = \boldsymbol{v}\boldsymbol{B} = \boldsymbol{B}\boldsymbol{v}_{0}\boldsymbol{e}\boldsymbol{x}\boldsymbol{p}\left[-\frac{\boldsymbol{U}(\boldsymbol{J})}{\boldsymbol{k}_{B}\boldsymbol{T}}\right] \quad \Rightarrow \boldsymbol{E} \propto \boldsymbol{B}\boldsymbol{e}\boldsymbol{x}\boldsymbol{p}\left[-\frac{\boldsymbol{U}_{0}}{\boldsymbol{k}_{B}\boldsymbol{T}}\left(\boldsymbol{1}-\frac{\boldsymbol{J}}{\boldsymbol{J}_{0}}\right)\right]$$

Other U(J) dependencies are theoretically predicted and experimentally observed when the elastic interactions among vortices cannot be neglected

The one that is most often used is the "logarithmic barrier" $U = U_0 \ln \left(\frac{J_0}{J} \right)$

$$E \propto Bexp\left[-\frac{U_0}{k_BT}ln\left(\frac{J_0}{J}\right)\right] \Rightarrow E \propto \left(\frac{J}{J_0}\right)^{\frac{U_0}{k_BT}}$$

Experimental V-I curves

The two parameters that define a superconducting wire:

- The critical current I_c is defined as the current corresponding to $E = 0.1 \ \mu V/cm$
- The *n-value* is an indication of the pinning strength, but also of the homogeneity of the wire. Higher the *n-value*, better the pinning

Persistent mode operation in a magnet

MRI and NMR magnets operate in persistent mode, without using a power supply

How does it work?

A high n-value (low magnetic relaxation) is necessary to operate in persistent mode

Persistent mode operation in a magnet

At the operation, the drift of the field is 10 ppb/hour The field is reduced by half in ~6'000 years !!

The heat generated in δx is

$$\delta q(\mathbf{x}) = \int I(\mathbf{x}) E(\mathbf{x}) d\mathbf{t} = J_c \delta \mathbf{x} \delta \varphi(\mathbf{x})$$

The field profile for an infinite slab in parallel field is, for 0 < x < a

$$\boldsymbol{B}(\boldsymbol{x}) = \boldsymbol{B}_{ext} - \mu_0 \boldsymbol{J}_c (\boldsymbol{a} - \boldsymbol{x})$$

$$\delta q(\mathbf{x}) = \int I(\mathbf{x}) E(\mathbf{x}) d\mathbf{t} = J_c \delta \mathbf{x} \delta \varphi(\mathbf{x})$$
$$B(\mathbf{x}) = B_{ext} - \mu_0 J_c (\mathbf{a} - \mathbf{x})$$

It follows

$$\delta\varphi(\mathbf{x}) = \int_{0}^{x} \Delta B(\mathbf{x}) d\mathbf{x} = \int_{0}^{x} \mu_{0} \Delta J_{c}(\mathbf{a} - \mathbf{x}) d\mathbf{x} = \mu_{0} \Delta J_{c}\left(\mathbf{a} - \frac{\mathbf{x}^{2}}{2}\right)$$

The heat per unit of volume (averaged on the slab) is

$$\Delta \boldsymbol{Q} = \frac{1}{a} \int_{0}^{a} \delta \boldsymbol{q}(\boldsymbol{x}) d\boldsymbol{x} = \frac{1}{a} \int_{0}^{a} \mu_{0} \boldsymbol{J}_{c} \Delta \boldsymbol{J}_{c} \left(\boldsymbol{a} \boldsymbol{x} - \frac{\boldsymbol{x}^{2}}{2} \right) d\boldsymbol{x} = \mu_{0} \boldsymbol{J}_{c} \Delta \boldsymbol{J}_{c} \frac{\boldsymbol{a}^{2}}{3}$$

Let's suppose a linear decrease of J_c with temperature

$$\Delta \boldsymbol{J}_{\boldsymbol{c}} = -\boldsymbol{J}_{\boldsymbol{c}} \frac{\Delta \boldsymbol{T}}{\left(\boldsymbol{T}_{\boldsymbol{c}} - \boldsymbol{T}_{\boldsymbol{op}}\right)}$$

MKS

Let's suppose a linear decrease of J_c with temperature

$$\Delta \boldsymbol{J_{c}} = -\boldsymbol{J_{c}} \frac{\Delta \boldsymbol{T}}{\left(\boldsymbol{T_{c}} - \boldsymbol{T_{op}}\right)}$$

If ΔQ_{ext} is the initial perturbation, the heat balance for the slab is

$$\Delta Q_{ext} + \frac{\mu_0 J_c^2 a^2}{3(T_c - T_{op})} \Delta T = c \Delta T$$

Because of the energy stored in the current, the effective specific heat is

$$\boldsymbol{c}_{eff} = \frac{\Delta \boldsymbol{Q}_{ext}}{\Delta \boldsymbol{T}} = \boldsymbol{c} - \frac{\mu_0 \boldsymbol{J}_c^2 \boldsymbol{a}^2}{\boldsymbol{3} \left(\boldsymbol{T}_c - \boldsymbol{T}_{op} \right)}$$

 c_{eff} can become zero \Rightarrow ultimate thermal catastrophe !!

The stability condition is

$$\boldsymbol{c}_{eff} = \boldsymbol{c} - \frac{\mu_0 \boldsymbol{J}_c^2 \boldsymbol{a}^2}{\boldsymbol{3} \left(\boldsymbol{T}_c - \boldsymbol{T}_{op} \right)} > \boldsymbol{0}$$

A superconducting wire must be designed in such a way that

$$\frac{\mu_0 J_c^2 a^2}{c \left(T_c - T_{op}\right)} < 3$$

And this demands the subdivision of the superconductor in fine filaments

Multifilamentary wires, coupling and twisting

The solution is TWISTING !!

If the interfilament matrix resistivity is too low, filaments are coupled. Again

- Losses when field is varied
- Flux jumps

Multifilamentary wires, coupling and twisting

The external field is increased along z at a rate **B**

For the geometry of the problem $E_v = 0$

$$\mathbf{E}_{\mathbf{x}} = \mu_{\mathbf{0}} \dot{\mathbf{B}} \mathbf{y}$$

Once the electric field is known, the current density J_n in the normal metal is given by $J_n = E_x / \rho_n$

The current flowing from one superconducting slab to the other over half the conductor height is

$$I_n = \int_0^\ell J_n dy = \frac{\mu_0 \dot{B}}{\rho_n} \int_0^\ell y dy = \frac{\mu_0 \dot{B} \ell^2}{2\rho_n}$$

NB The current is defined per unit length in the z-direction, the slab is infinite in z

Multifilamentary wires, coupling and twisting

The current flowing from one superconducting slab to the other is

If the two superconducting slabs are fully coupled

 $I_n = J_c d_f$

This occurs for values of ℓ beyond a certain ℓ_c

$$\ell_{c} = \sqrt{\frac{2\rho_{n}J_{c}d_{f}}{\mu_{0}\dot{B}}}$$

If $\ell << \ell_c$ there is no current sharing with the matrix and filaments are uncoupled The filament twist pitch must be smaller than ℓ_c

Superconductors History

YBCO

From superconducting materials...

...to technical superconductors

- 1. Superconducting ?10'000
- 2. $T_c > 4.2K \& B_{c2} > 10T$? 100
- 3. $J_c > 1000 \text{ A/mm}^2$? ~10

From superconducting materials...

...to technical superconductors

The six steps

- 1. Discovery
- 2. Improvement of J_c performance
- 3. Co-processing with matrix metal
- 4. Multifilament form
- 5. *I_c* > 100 A in length > 1 km
- 6. Thermal and mechanical stabilization

Superconducting elements

hydrogen 1]																	helium 2
H																		не
1.0079 lithium	beryllium	1											boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												B	C	Ν	0	F	Ne
6.941	9.0122		SC (ີ am	bient	press	sure							12.011	14.007	15.999	18.998	20.180
sodium	magnesium 12												aluminium 13	silicon 1/	phosphorus 15	sulfur 16	chlorine 17	argon 18
	N/		SC (ື higl	h pres	ssure								0:	D		ä	A
Na	IVIG			0-										51	Р	5	LI LI	Ar
22.990	24.305			Mar at harms						at a tract				28.086	30.974	32.065	35.453	39.948
potassium 19	20 calcium		scandium	22	vanadium	24	manganese 25	26	27	11CKei 28	copper 29	Zine 30	gallium 31	germanium 32	arsenic 33	selenium 34	35	Krypton 36
V	Č		C	T :	Ň	C.	Min	Го	Co	NI:	<u> </u>	7.0	Co	Co	A	6	D ~	Ň.
n	Ca		SC		V	Cr	IVIN	ге	60	INI	Сu	ZN	Ga	Ge	AS	Se	DĽ	nr
39.098	40.078		44. <mark>956</mark>	47.867			54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Dh	C.		V	7.	NIL	Ma	Ta	Du	Dh	Dd	<u>۸</u>	Cd	l in	Cn	Ch	Ta	i i	V.
	51		T I		Q		IC	RU	R	Pa	Ag	Ca	III III	SU	3 D	re		ve
85.468	87.62 borium		88.906						102.91 iridium	106.42	107.87 gold	112.41		118.71	121.76 biomuth	127.60 polonium	126.90 astatino	131.29 rodop
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ce	Da	¥	1.00	LIF	Ta	14/	Po	Oc	le -	Dt	A	La	TI	Dh	Di	Do	۸ŧ	Dn
US	Dd	~	Lu	п	Id	VV	Re	05		гι	Au	пу		ГР	DI	гu	Αι	RII
132.91 francium	137.33 radium		174.97 Jawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bobrium	190.23 hassium	192.22 meitnerium	195.08 upunpilium	196.97 unununium	200.59 upunbium	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Er	Da	¥ ¥	l r	Df	Dh	50	Bh	Цe	Мłŧ	Hum	11	Hub		Illua				
	i\a	^ ^		IXI	טט	Jy	ы	115	IVIL	oun	ouu	oup		ouy				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

			Ianthanum	58	praseodymium 59	neodymium 60	prometnium 61	samarium 62	europium 63	gadolinium 64	65	aysprosium 66	noimium 67	erbium 68	69 thuilium	ytterbium 70
Type I	T_c [K]	$\mu_{\circ}H_{c}^{*}[T]$	La	Ce	Pr	Ňd	Pm	Sm	Eu	Gd	Tb	Ďу	Ho	Ēr	Tm	Yb
Ti (metals)	0.39	0.0100	138.91 actinium 89	140.12 thorium 90	140.91 protactinium 91	144.24 uranium 92	[145] neptunium 93	150.36 plutonium 94	151.96 americium 95	157.25 curium 96	158.93 berkelium 97	162.50 californium 98	164.93 einsteinium 99	167.26 fermium 100	168.93 mendelevium 101	173.04 nobelium 102
Zr	0.55	0.0047	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Zn	0.85	0.0054	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]
Al	1.18	0.0105														
In	3.41	0.0281														
Sn	3.72	0.0305														
Hg	4.15	0.0411									TT + 1					
V	5.38	0.1403	Ty	pe II				1	$l_c [K]$	μ_{\circ} .	$H_{c_2}^{*}$	[T]				
Pb	7.19	0.0803	Nb	(me	tals)				9.5		0.2^{*}					

The cookbook for new superconductors before 1986

Almost all superconductors discovered after 1980 do not follow these rules !!

HTS are copper oxides The undoped parent compounds are antiferromagnetic Mott insulators

Superconducting alloys and intermetallics

• An alloy is a solid solution or mixture in which atoms are randomly distributed on the lattice sites

• An intermetallic compound contains definite ratios of atoms that are crystallographically ordered. There is a unit cell that replicates itself throughout the space to generate the lattice

Superconducting alloys

NbTi : the King of the Hill

Type II	$T_c \left[\mathrm{K} \right]$	$\mu_{\circ} H_{c_2}^{*} [\mathrm{T}]$
Nb (metals)	9.5	0.2*
NbTi (alloys)	9.8	10.5^{+}

- Enabling technology for the large diffusion of MRI (a 4'000 M€ market!)
- 1200+ tonnes of NbTi in LHC

Nb47wt%Ti : *How to get high J_c*

FIGURE 11.15: TEM image of the microstructure (transverse cross-section) of the first 3700 A/mm² (5 T, 4.2 K) multifilamentary strand from a US manufacturer (OST). This previously unpublished image taken on September 5th 1986, shows the dense array of folded α -Ti ribbons (lighter contrast) that create the strong vortex pinning.

α -Ti precipitates are adjusted to the proper dimensions in order to pin vortices

Introduction to Nb₃Sn

Nb₃Sn is the prototype of A15 superconductors

B.T. Matthias et al., PR 95 (1954) 1435

0.6 0.8
0.8
17
17
17
1./
1.8
15.0
15.0
10.6
12.7
9.6
8.8

A15 are intermetallic compounds with A₃B formula

Nb₃Sn : the Superconductor for high fields (today)

	<i>T_c</i> [K]	<i>B_{c2}</i> [T]
Nb ₃ Sn	18.0	30+

Nb_{3+x}Sn_{1-x} is superconducting also when deviates from stoichiometry

A. Godeke, SuST 19 (2006) R68

Bibliography

P.W. Anderson and Y.B. Kim RMP <u>36</u> (1964) 39

Y. Yeshurun, A.P. Malozemov and A. Shaulov RMP <u>68</u> (1996) 911

Wilson Superconducting Magnets Chapter 7 & 8

Iwasa Case Studies in Superconducting Magnets Chapter 5 Problem 5.4

Rogalla & Kes 100 Years of Superconductivity Chapter 3 Section 7 Chapter 11 Section 2 (NbTi) Section 3 (Nb₃Sn)