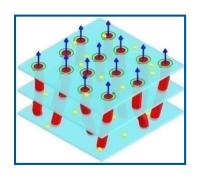
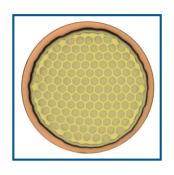


Superconductivity and its applications

Lecture 4



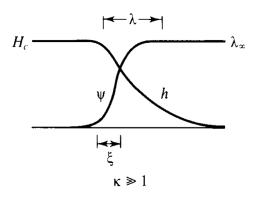
Carmine SENATORE



Group of Applied Superconductivity
Department of Quantum Matter Physics
University of Geneva, Switzerland

Previously, in lecture 3

Type-II superconductors: Mixed state and quantized vortices



$$\kappa > \frac{1}{\sqrt{2}} \implies \Delta E < 0$$
wall energy

- Magnetic flux penetrates beyond H_{c1}
- Being the wall energy negative, the system prefers to maximize the walls
- The entering flux is fractionated in vortices, each one carrying a flux quantum $\Phi_0 = \frac{hc}{2e}$

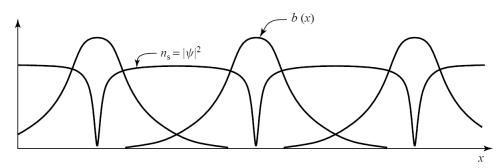
Previously, in lecture 3 From the Ginzburg-Landau equations

In a type-II superconductor, the critical fields are related to the characteristic lengths

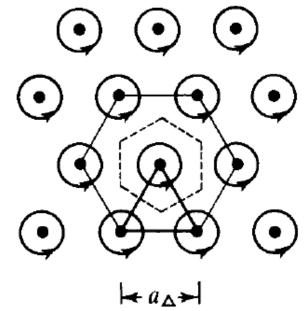
$$H_{c1} = \frac{\Phi_0}{4\pi\lambda^2} \ln \kappa = \frac{H_c}{\sqrt{2}\kappa} \ln \kappa$$

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2} = \sqrt{2}\kappa H_c$$

The structure of the vortex lattice



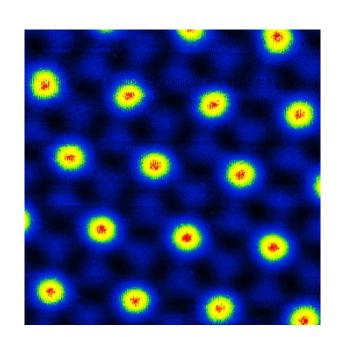
$$|\psi(r)| = \psi_{\infty} \tanh \frac{r}{\sqrt{2}\xi}$$
 $h(r) \approx \frac{\Phi_0}{2\pi\lambda^2} \left[\ln \frac{\lambda}{r} + 0.12 \right]$



From the solution of the linearized 1^{st} G-L equation at H_{c2}

$$\psi_L = \sum_n C_n \psi_n = \sum_n C_n \exp(inqy) \exp\left[-\frac{(x - x_n)^2}{2\xi^2}\right]$$

$$x_n = \frac{nq\Phi_0}{2\pi H}$$
 and $C_n = C_{n+\nu}$



Interaction between vortices

In lecture 3, we found

$$\mathcal{E}_{\text{1-vortex}} \approx \frac{\Phi_{\text{0}}}{8\pi} h(0)$$

and in the case of 2 vortices

$$\varepsilon_{\text{2-vortices}} = \frac{\Phi_{\text{0}}}{8\pi} \left[h_{\text{1}}(\mathbf{r}_{\text{1}}) + h_{\text{1}}(\mathbf{r}_{\text{2}}) + h_{\text{2}}(\mathbf{r}_{\text{1}}) + h_{\text{2}}(\mathbf{r}_{\text{2}}) \right]$$

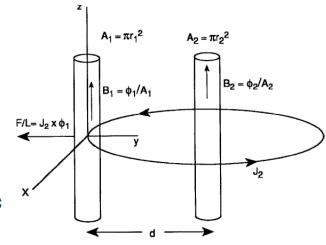
$$= 2 \left[\frac{\Phi_0}{8\pi} h_1(r_1) \right] + \frac{\Phi_0}{4\pi} h_1(r_2)$$

$$=$$
 2 $\varepsilon_{1-vortex} + \varepsilon_{interaction}$

Interaction between vortices

The force of vortex 1 on vortex 2 is

$$f_2 = -\nabla \varepsilon_{interaction} = J_1(r_2) \times \frac{\Phi_0}{c} \hat{z}$$



The obvious generalization to an arbitrary array is

$$f = J_s \times \frac{\Phi_0}{c} \hat{z}$$

 J_s is the total supercurrent due to all other vortices J_{array} + any transport current J_{ext} at the vortex core position.

Obviously, at equilibrium

$$J_{array} \times \frac{\Phi_0}{c} \hat{z} = 0$$

Vortex motion and dissipation: Flux Flow

Let's focus on the effects of a transport current J_{ext}

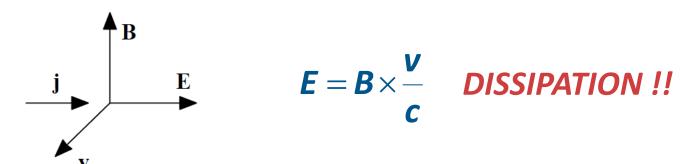
On a single vortex

$$f = J_{ext} \times \frac{\Phi_0}{c} \hat{z}$$

On the vortex lattice

$$F = \sum f = n_v f = J_{ext} \times n_v \frac{\Phi_0}{c} \hat{z} = J_{ext} \times \frac{B}{c}$$

Therefore, vortices tend to move transverse to $J_{\rm ext}$. If v is their velocity



Vortex motion and dissipation: Flux Flow

Bardeen and Stephen [PR 140 (1965) A1197] showed that the vortex velocity v is dumped by a viscous drag term

$$J_{ext} \frac{\Phi_0}{c} = \eta V_L$$

And

$$\rho_{ff} = \frac{E}{J} = B \frac{\Phi_0}{\eta c^2}$$

 $E = B \times \frac{V}{c}$

The following form is predicted for η

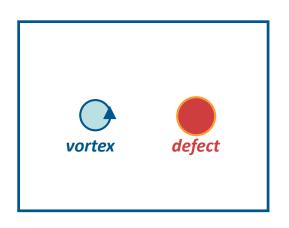
$$\eta = \frac{\Phi_0 B_{c2}}{\rho_n c^2}$$

And thus

$$ho_{\mathit{ff}} =
ho_{\mathit{n}} \left(\frac{B}{B_{c2}} \right)$$

Normal fraction in the SC, occupied by the vortex cores

Vortex-defect interaction



$$\Delta \textit{\textbf{G}} = \Delta \textit{\textbf{G}}_{\textit{condensation}} \big(\textit{\textbf{defect}} \big) + \Delta \textit{\textbf{G}}_{\textit{condensation}} \big(\textit{\textbf{vortex}} \big) - \Delta \textit{\textbf{G}}_{\textit{mag}}$$

$$\Delta G = \Delta G_{condensation} (defect) - \Delta G_{max}$$

Force to extract the vortex from the defect $f_p = -\nabla U(r)$

Defects are impurities, grain boundaries and any spatial inhomogeneity, whose size is comparable with λ and ξ

Vortex-defect interaction

$$f = J_{ext} imes \frac{\Phi_0}{c}$$

Force exerted from J_{ext}

$$\boldsymbol{f_p} = \boldsymbol{J_c} \times \frac{\Phi_0}{\boldsymbol{c}}$$

Pinning Force exerted from defects

J_c is the critical current density

If
$$f < f_p$$
 then $v = 0$ and $\rho = 0$

If
$$f > f_p$$
 then $\mathbf{v} \neq \mathbf{0}$ and $\rho \neq \mathbf{0}$

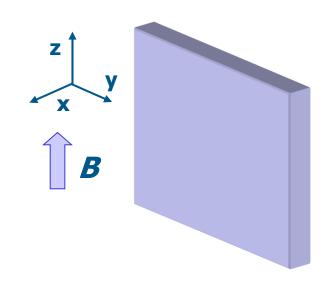
Only superconductors with defects are truly superconducting (ρ = 0) !!

Critical state: the Bean model

$$F = J \times \frac{B}{c} + \nabla \times H = \frac{4\pi}{c}J$$

For an infinite slab in parallel field

$$F = \frac{JB}{c} = \frac{1}{4\pi}B\frac{dB}{dx} \leq F_P = \frac{J_cB}{c}$$

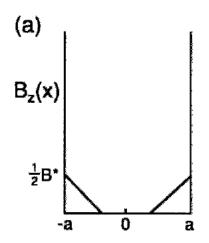


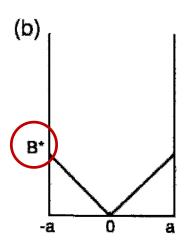
In the critical state
$$\mathbf{F} = \mathbf{F}_p \Rightarrow \frac{d\mathbf{B}}{d\mathbf{x}} = \frac{4\pi}{c} \mathbf{J}_c \Rightarrow \Phi_0 \frac{d\mathbf{n}_v}{d\mathbf{x}} = \frac{4\pi}{c} \mathbf{J}_c$$

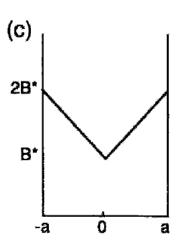
N.B. The critical current density J_c is different from the depairing current J_d

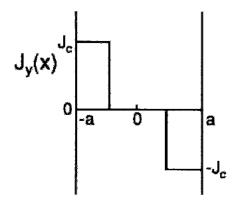
Depairing current
$$\frac{1}{2}n_s m^* v_d^2 = \frac{2\pi}{c^2} \lambda^2 J_d^2 = \frac{H_c^2}{8\pi} \Rightarrow J_d = c \frac{H_c}{4\pi\lambda}$$

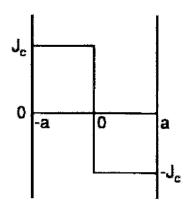
Critical state: the Bean model

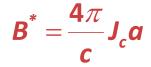


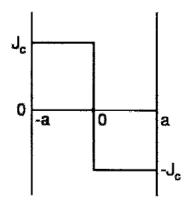




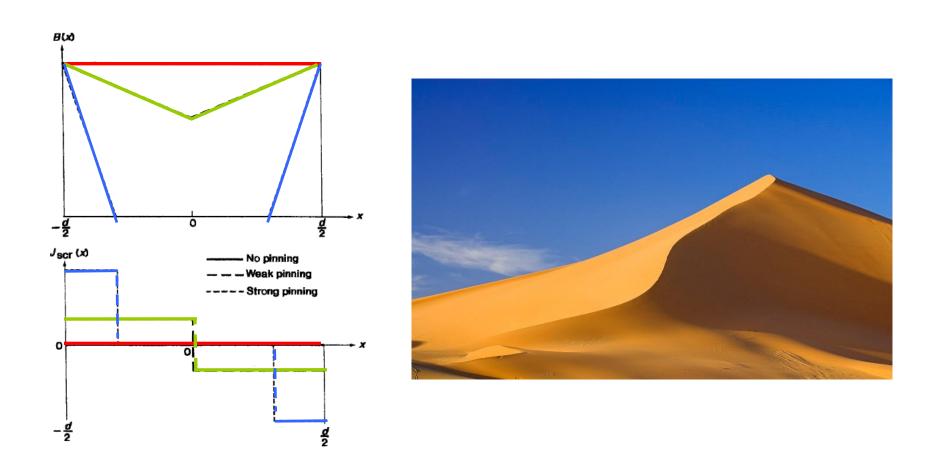






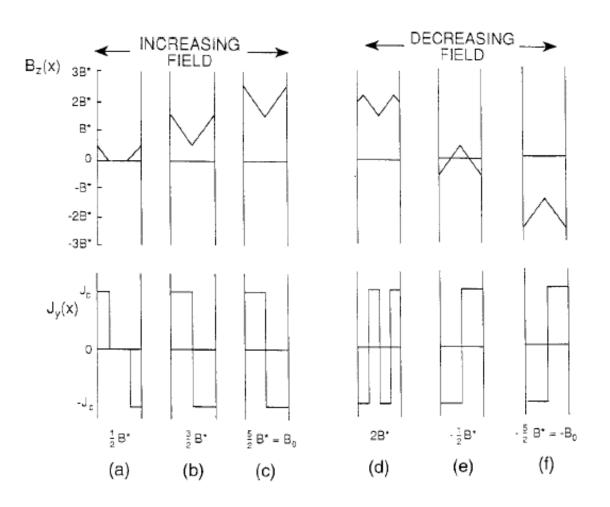


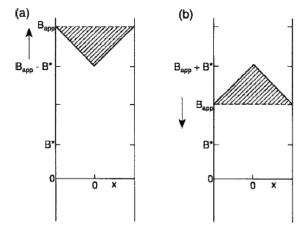
Critical state: Pinning strength



The critical current density J_c depends on the type, size and distribution of the pinning centers

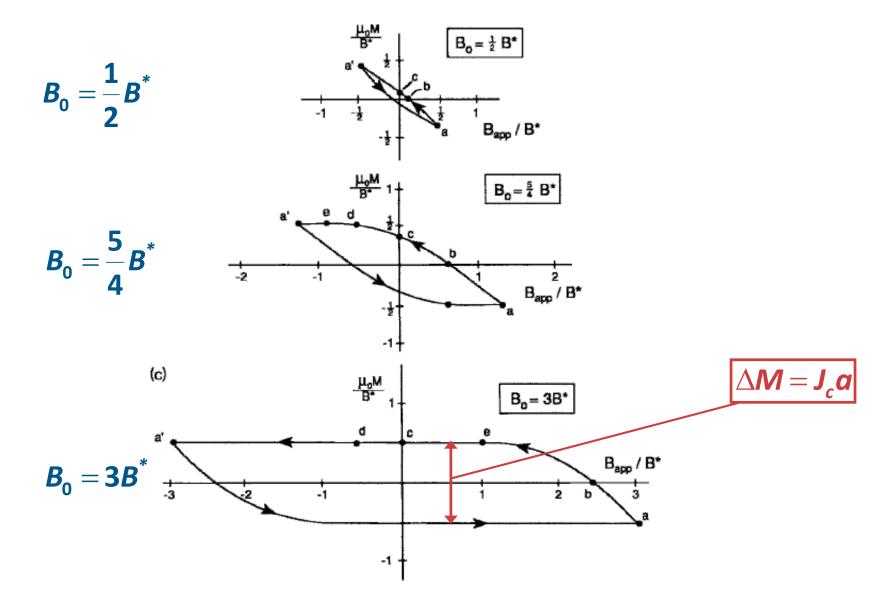
Critical state: Reversing field



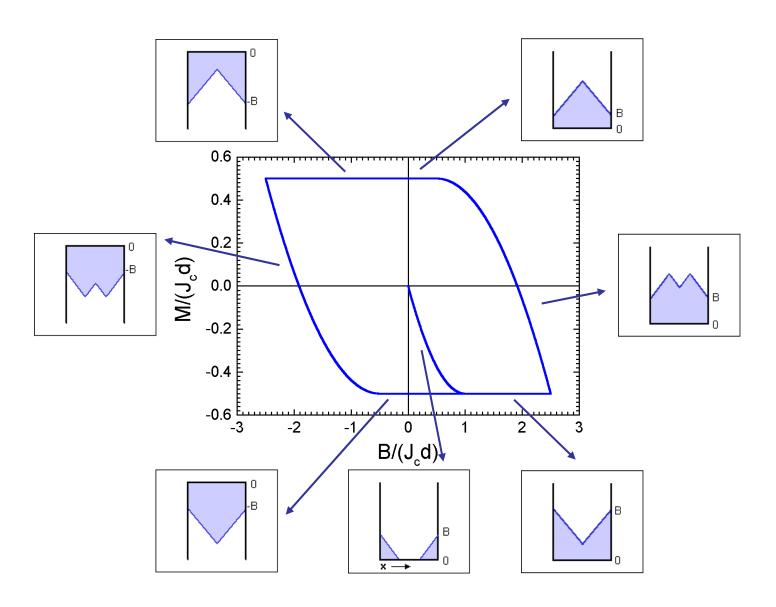


The shaded area corresponds to the sample magnetization

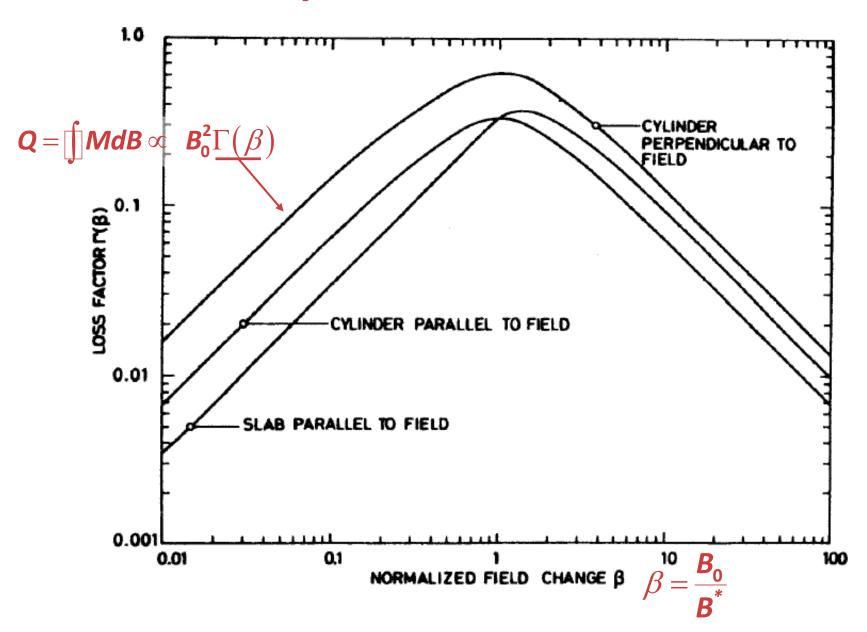
Critical state: Hysteresis loop



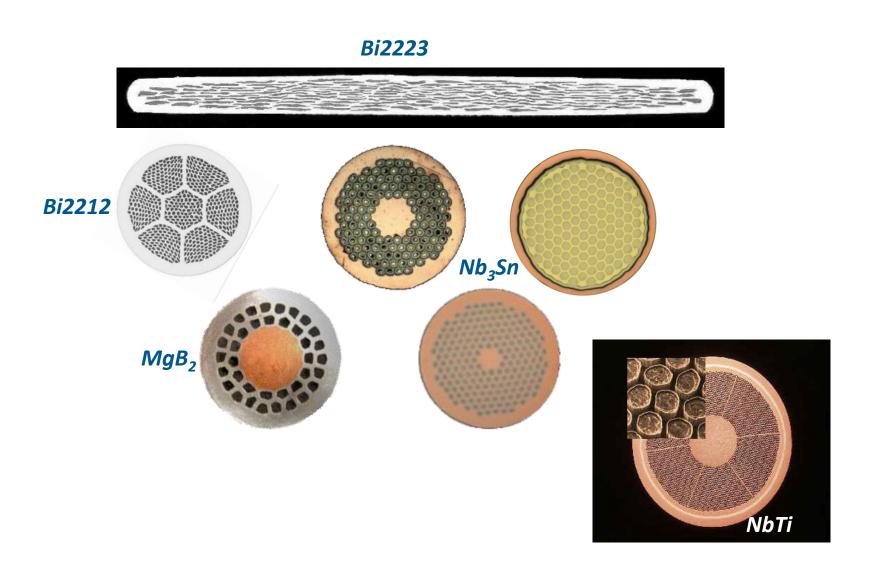
Critical state: Hysteresis loop



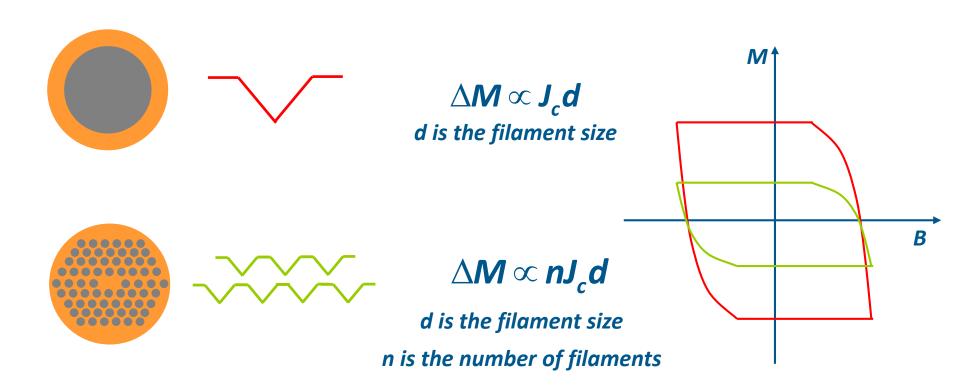
Critical state: Hysteresis and losses



Superconducting wires are multifilamentary. WHY?



Superconducting wires are multifilamentary. WHY?



With the subdivision of the superconducting layer in filaments, hysteretic losses are reduced but the critical current density J_c is unchanged

Extracting J_c from magnetization

Knowing that $M = \frac{1}{2V_V} \int_V r \times J \, dV$ it is possible to calculate the expression of M for a given, constant J

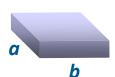
$$J_c = 3 \frac{\Delta M}{R}$$

$$J_c = 2\frac{\Delta M}{d}$$

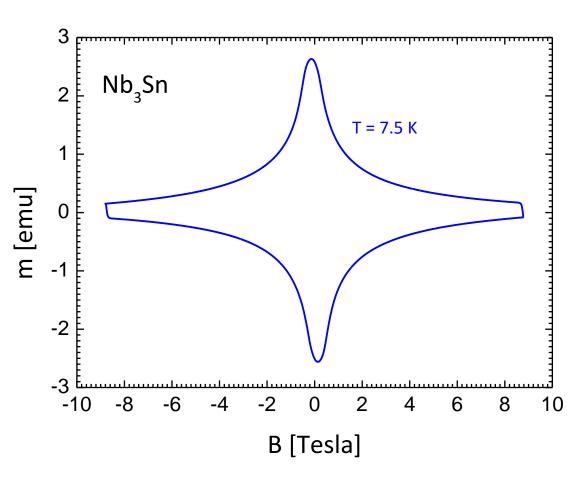
$$J_c = \frac{3}{2} \frac{\Delta M}{R}$$

$$J_c = 3 \frac{\Delta M}{b(3-b/a)}$$

$$J_c = \frac{3\pi}{8} \frac{\Delta M}{R}$$

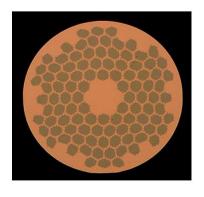


Field dependence of J_c



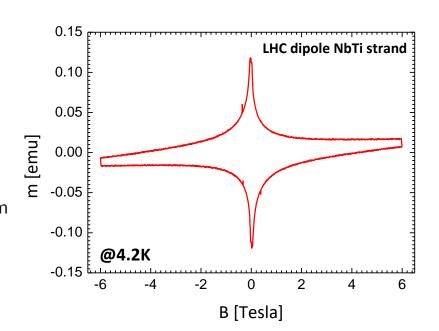
$$\Delta \mathbf{M} = \Delta \mathbf{M}(\mathbf{B}) \implies \mathbf{J}_{c} = \mathbf{J}_{c}(\mathbf{B})$$

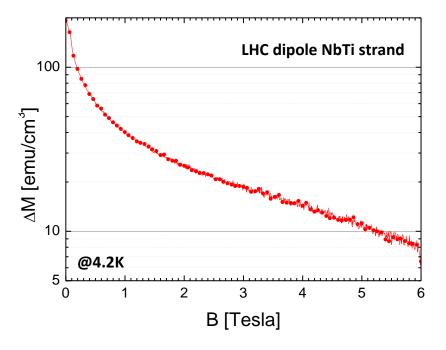
Field dependence of J_c

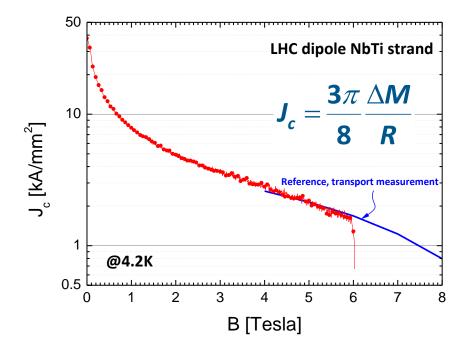


LHC dipole strand

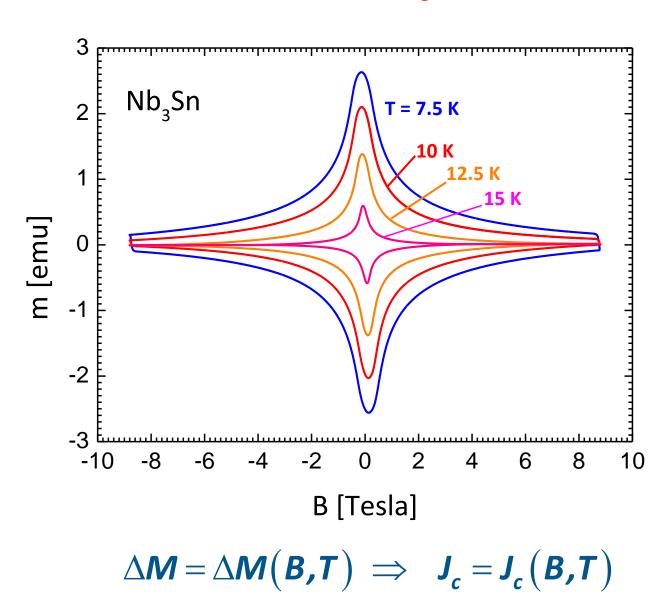
- F8670 Ø 1.065 mm
- Cu : NbTi = 1.65
- Filament diameter \approx 7 μm
- Ic = 540 A @ 7 T; 4.2 K





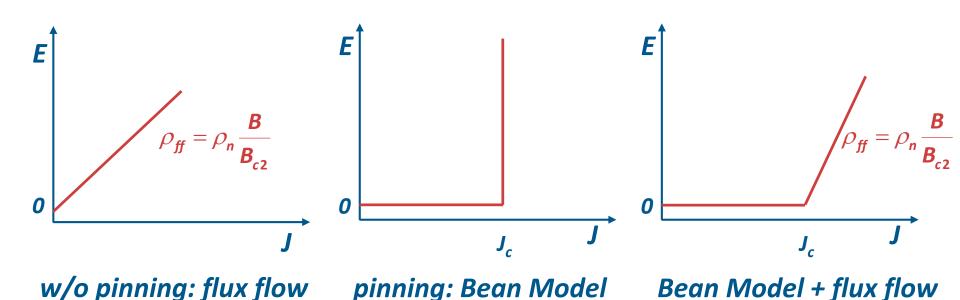


Temperature dependence of J_c



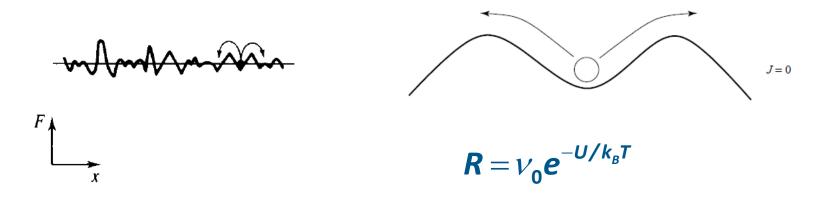
E-J relation for a type-II superconductor

E-J relation for a superconductor in the mixed state

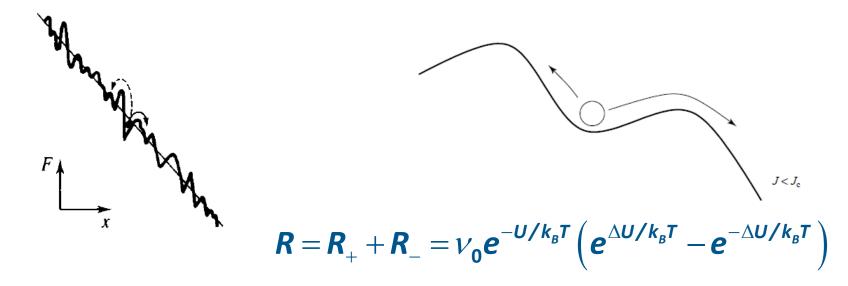


The effect of thermal excitation was not yet included

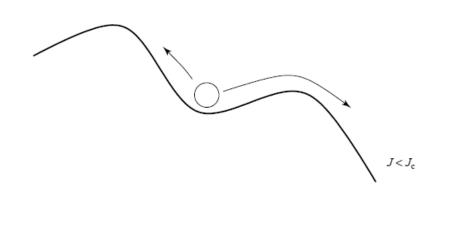
Beyond Bean: Thermally activated flux creep



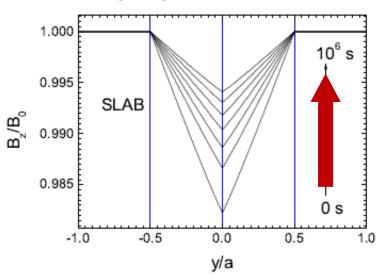
In the presence of an external current



Thermally activated flux creep



The B-profile relaxes with t



$$\mathbf{R} = \mathbf{R}_{+} + \mathbf{R}_{-} = v_{0} \mathbf{e}^{-U/k_{B}T} \left(\mathbf{e}^{\Delta U/k_{B}T} - \mathbf{e}^{-\Delta U/k_{B}T} \right)$$

In a first approximation

$$R \approx R_{+} = v_{0}e^{-(U-\Delta U)/k_{B}T}$$
 where $\Delta U = \Delta U(J)$

Thermally activated flux creep

$$\mathbf{R} \approx \mathbf{R}_{+} = v_{0} e^{-\left[\mathbf{U} - \Delta \mathbf{U}(\mathbf{J})\right]/k_{B}T} \Rightarrow v = v_{0} \exp\left[-\frac{U(\mathbf{J})}{k_{B}T}\right]$$

In the infinite slab – parallel field geometry

$$\boxed{\frac{\partial \mathbf{E}}{\partial \mathbf{x}} = \frac{\partial \mathbf{B}}{\partial \mathbf{t}}} \quad + \quad \boxed{\mathbf{E} = \mathbf{v}\mathbf{B}} \quad \Rightarrow \quad \frac{\partial B}{\partial t} = \frac{\partial}{\partial x}(vB)$$

$$\frac{\partial B}{\partial x} = -\mu_0 J$$
 with $B\|z$ and $J\|y$ \Rightarrow $\frac{\partial J}{\partial t} = -\frac{1}{\mu_0} \frac{\partial^2}{\partial x^2} (vB)$

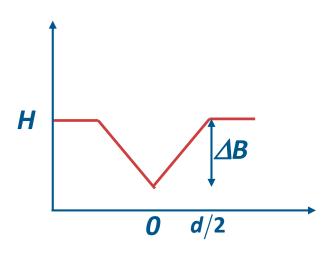
$$\frac{\partial J}{\partial t} = -\frac{1}{\mu_0} \frac{\partial^2}{\partial x^2} \left[v_0 e^{-\frac{U(J)}{k_B T}} B \right]$$

Thermally activated flux creep: Anderson-Kim model

$$\iint \frac{\partial J}{\partial t} = \iint \frac{1}{\mu_0} \frac{\partial^2}{\partial x^2} \left[v_0 e^{-\frac{U(J)}{k_B T}} B \right]$$

- 1) ∆B << H
- 2) J is constant in space

$$\frac{\partial J}{\partial t} = -\frac{8v_0 H}{\mu_0 d^2} \exp\left[-\frac{U(J)}{k_B T}\right]$$



In the Anderson-Kim model
$$U = U_0 \left(1 - \frac{J}{J_0} \right)$$
 where $U_0 = U_0 \left(B, T \right)$

The solution for J is
$$J(t) = J_0 \left[1 - \frac{k_B T}{U_0} ln \left(\frac{t}{t_0} \right) \right]$$

Thermally activated flux creep: Anderson-Kim model

The current density J and the magnetization M both relax with the logarithm of time

 $M \propto J$

$$J(t) = J_0 \left[1 - \frac{k_B T}{U_0} ln \left(\frac{t}{t_0} \right) \right]$$

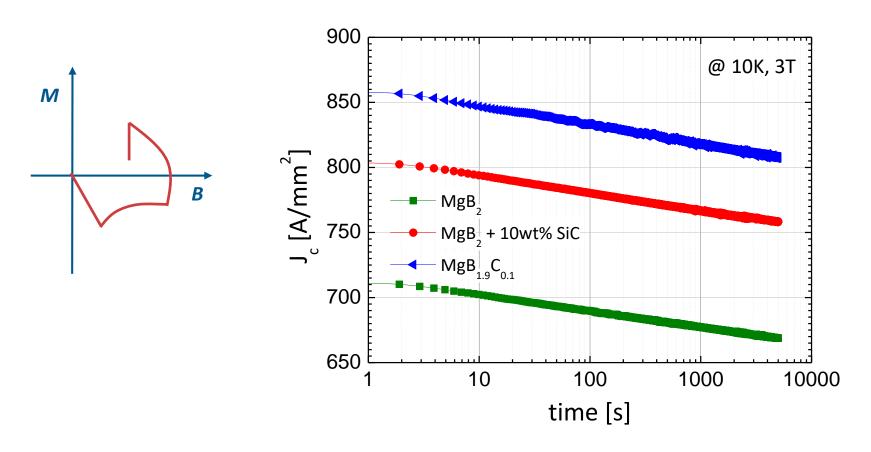
The relaxation rate S is directly proportional to T and inversely proportional to U_0

$$S = -\frac{1}{M_0} \frac{dM}{d \ln t} = \frac{k_B T}{U_0}$$

Measuring S as a function of B and T, we have an experimental access to the pinning energy

$$U_0 = U_0(B,T)$$

Magnetic relaxation experiments



Typical values of the activation energy U_0 span in the range 10-100 meV (~100-1000 K)

Bibliography

Tinkham
Introduction to Superconductivity
Chapter 5

Fosshein & Sudbø Superconductivity: Physics and Applications Chapter 8