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Type-II superconductors: Mixed state and quantized vortices

• Magnetic flux penetrates beyond Hc1
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• Being the wall energy negative, the 
system prefers to maximize the walls

• The entering flux is fractionated in 

vortices, each one carrying a  flux 
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Previously, in lecture 3



Previously, in lecture 3
From the Ginzburg-Landau equations

In a type-II superconductor, the critical fields are related to the 
characteristic lengths 
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The structure of the vortex lattice
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From the solution of the linearized                     
1st G-L equation at Hc2
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Interaction between vortices
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and in the case of 2 vortices
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In lecture 3, we found



Interaction between vortices

The force of vortex 1 on vortex 2 is

The obvious generalization to an arbitrary array is
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Js is the total supercurrent due to all other vortices Jarray + any 

transport current Jext at the vortex core position. 

Obviously, at equilibrium
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Vortex motion and dissipation: Flux Flow

Let’s focus on the effects of a transport current Jext

On a single vortex
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Therefore, vortices tend to move transverse to Jext . If v is their velocity
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Vortex motion and dissipation: Flux Flow

Bardeen and Stephen [PR 140 (1965) A1197] showed that the vortex 

velocity v is dumped by a viscous drag term
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   condensation condensation magG G defect G vortex G   

 condensation magG G defect G  

Vortex-defect interaction

vortex defect

Force to extract the vortex from the defect  pf U r 

Defects are impurities, grain boundaries and any spatial inhomogeneity,  whose 

size is comparable with  and
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Vortex-defect interaction

Force exerted from Jext

pf

Pinning Force exerted 

from defects
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Jc is the critical current density
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Only superconductors with defects are truly superconducting ( = 0 ) !!



Critical state: the Bean model
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N.B. The critical current density Jc is different from the depairing current Jd
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C.P. Bean, Phys. Rev. Lett. 8 (1962) 250



Critical state: the Bean model
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Critical state: Pinning strength

The critical current density Jc depends on the type, size and distribution of the 

pinning centers



Critical state: Reversing field

The shaded area 

corresponds to the sample 

magnetization



Critical state: Hysteresis loop
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Critical state: Hysteresis loop



Critical state: Hysteresis and losses
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Superconducting wires are multifilamentary. WHY ?

Bi2223

Bi2212

MgB2

Nb3Sn

NbTi



Superconducting wires are multifilamentary. WHY ?

cM J d 
d is the filament size

cM nJ d 

d is the filament size

n is the number of filaments

M

B

With the subdivision of the superconducting layer in filaments, hysteretic 

losses are reduced but the critical current density Jc is unchanged



Extracting Jc from magnetization

Knowing that                                     it is possible to calculate the 

expression of M for a given, constant J
V
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Field dependence of Jc
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Field dependence of Jc

0 1 2 3 4 5 6
5

10

100

@4.2K

 

 


M

 [
e

m
u
/c

m
3
]

B [Tesla]

LHC dipole NbTi strand

0 1 2 3 4 5 6 7 8
0.5

1

10

50

J
c
 [

k
A

/m
m

2
]

B [Tesla]

Reference, transport measurement

LHC dipole NbTi strand

@4.2K

c

M
J

R

 


3

8

-6 -4 -2 0 2 4 6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 

 

m
 [

em
u

]

B [Tesla]

LHC dipole NbTi strand

@4.2K



Temperature dependence of Jc
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E-J relation for a type-II superconductor

E

J
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pinning: Bean Model
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Bean Model + flux flow

E-J relation for a superconductor in the mixed state
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w/o pinning: flux flow

The effect of thermal excitation was not yet included



Beyond Bean: Thermally activated flux creep
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Thermally activated flux creep
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In a first approximation
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The B-profile relaxes with t



Thermally activated flux creep
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2) J is constant in space
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Thermally activated flux creep: Anderson-Kim model

The solution for J is   Bk T t
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Thermally activated flux creep: Anderson-Kim model
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The relaxation rate S is directly proportional to T and inversely 
proportional to U0
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The current density J and the magnetization M both relax with the 
logarithm of time   

Measuring S as a function of B and T, we have an experimental access to 
the pinning energy     
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Magnetic relaxation experiments
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Typical values of the activation energy U0 span in the range  10-100 meV

(~100-1000 K)
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