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Ginzburg-Landau Theory of Superconductivity

A case of order-disorder transition

Previously, in lecture 2
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Ginzburg-Landau Theory of Superconductivity

Previously, in lecture 2
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1st G-L equation
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The two Ginzburg-Landau equations
Previously, in lecture 2



Resolution of the 1st G-L equation in special cases

Previously, in lecture 2

• Zero-field case deep inside superconductor
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From thermodynamics
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insulator superconductor



• Zero-field case near superconductor boundary
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Previously, in lecture 2
From the Ginzburg-Landau equations

1) Two characteristic lengths in a superconductor 
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penetration depth

2) Two types of superconductors, depending on  







Type-I superconductor Type-II superconductor





Type-I, type-II and domain-wall energy

H < Hc
Type-I superconductor

Type-II superconductor Hc1 < H < Hc2
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Intermediate state: laminar superconductivity
Type-I superconductors
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Locally the field raises to Bc  superconductivity is suppressed
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Infinite strip in 
perpendicular field

The thinner the film, the smaller the domain repetition distance d (obtained 

by minimizing the total free energy)



Type-I, type-II and domain-wall energy

H < Hc
Type-I superconductor

Type-II superconductor Hc1 < H < Hc2

Laminar intermediate state

Mixed state



The structure of an isolated vortex

How to modify the 1st London equation in the presence of a vortex
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The structure of an isolated vortex
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Analytical solution 

r
h(r ) K

 

  
  

 

0
022

r /h(r ) e
r

 



  
  

 

1

2
0

22 2

h(r ) ln .
r





  
   

0
2

0 12
2

r 

r  

Two limits 



The structure of an isolated vortex
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Coherence length  and Upper critical field Hc2
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The 1st G-L equation

Close to Hc2 ||2 is small 
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If H // z,  we choose 
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Other possible choices:                             and 



Coherence length  and Upper critical field Hc2

We look for a solution in the form

where

Quantum Harmonic Oscillator: Schrodinger Equation



Coherence length  and Upper critical field Hc2
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Lower critical field Hc1 for  >> 1
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Free energy of a vortex line
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The lower critical field is



Lower critical field Hc1 for  >> 1

Free energy of a vortex line
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Integration over (S 2)
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Lower critical field Hc1 for  >> 1

Integration over (S 2)

It follows
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Lower critical field Hc1 for  >> 1
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Hc , Hc1 and Hc2
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1957: BCS - Microscopic theory of superconductivity

Bardeen, Cooper and Schrieffer

1972

In 1959, Gorkov showed that the macroscopic GL theory can be 
derived from microscopic BCS theory at temperatures close to the 
critical one

In 1957, Bardeen, Cooper, and Schrieffer propose 
their microscopic theory of superconductivity, the 
BCS theory. 

• Electron-phonon coupling as origin of attractive interaction between electrons

• Cooper Pairs: paired electrons with opposite momentum and spin (bosons with 
zero spin) forming a macroscopic condensed state

• The binding energy introduces an energy gap  between paired and unpaired state
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As shown for the determination of Hc2 , close to Hc2 and for H // z, 

the 1st G-L equation

can be rewritten as

The Abrikosov vortex lattice
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Solutions can have the form

wherewhere



The Abrikosov vortex lattice

where

becomes
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From slide 15, at H = Hc2 it is kz = 0

It follows

where k = ky

L kdk g(k )  



The Abrikosov vortex lattice

We expect a crystalline array of vortices to have lower energy than a 

random one

Therefore we restrict the values of k to

nk nq

This choice determines a periodicity in y and x 
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And it follows

H x y  0

A.A. Abrikosov, Sov. Phys. JETP 5 (1957) 1174
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The Abrikosov vortex lattice

The solution

can be generalized as the overlap of periodic functions 

For the periodicity in x, we impose conditions on Cn

n nC C 

Square lattice = 1

Triangular lattice = 2 and C1= iC0



The Abrikosov vortex lattice

To determine the shape of the vortex lattice for H < Hc2 the non-linear 

term in the 1st G-L equation cannot be neglected

Abrikosov has shown that the solution depends on
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For the triangular lattice A .  1 16 and the lattice spacing is

For the square lattice A .  1 18 and the lattice spacing is a
B

 
  
 

1
2

0



The Abrikosov vortex lattice
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Interaction between vortices

From slide 18, the free energy of a single vortex is
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In the case of 2 vortices
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Interaction between vortices

 int eraction h r
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And the force is



Interaction between vortices
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The force of vortex 1 on vortex 2 is

The obvious generalization to an arbitrary array is
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Js is the total supercurrent due to all other vortices Jarray + any 

transport current Jext at the vortex core position. 

Obviously, at equilibrium
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