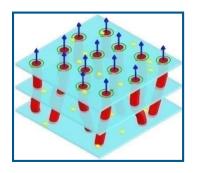


Superconductivity and its applications

Lecture 1



Carmine SENATORE

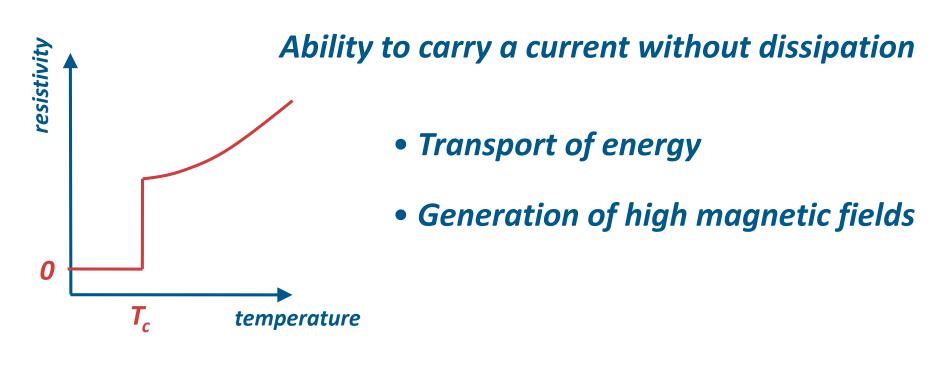


Département de Physique de la Matière Quantique Université de Genève

Scope & Summary

- Phenomenology
- An introduction to electrodynamics of superconductors
- The Ginzburg-Landau theory
- Interactions in the vortex line system, focused on pinning phenomena, critical state and thermal effects on vortex dynamics
- An overview of the superconducting materials, addressing also the properties of superconducting wires and cables
- Superconductor Technology: basic design and operation issues of a superconducting device

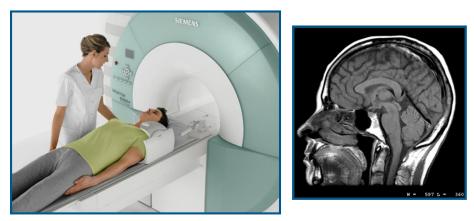
Discovery of Superconductivity in 1911

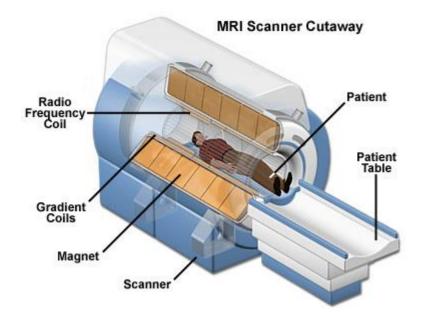


Drawbacks:

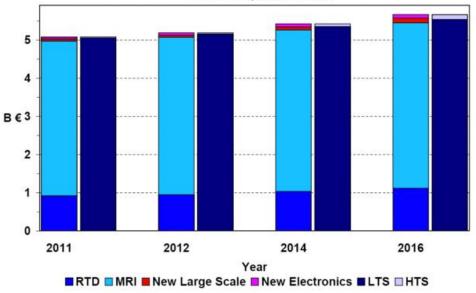
Loss-less currents cannot exceed the critical current I_c 1000+ superconducting compounds, very few for practical use

Medical Imaging and NMR spectroscopy



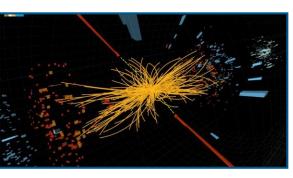


Global Market for Superconductivity Conectus, March 2012

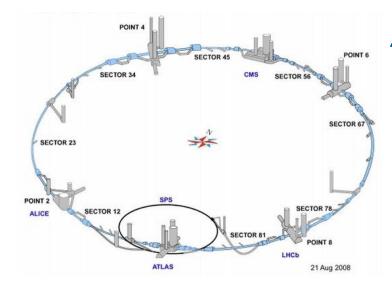


Medical Imaging and NMR spectroscopy

Superconductivity and LHC Higgs boson



Superconductivity and LHC Higgs boson

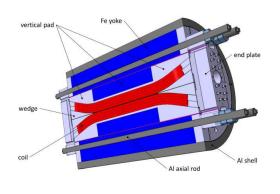


Along the 27 Km of LHC

1200 dipole magnets

400 quadrupole magnets

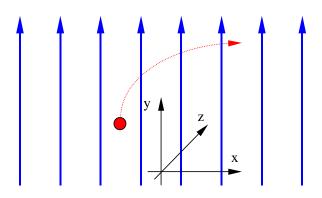
1200+ tonnes of NbTi @ 1.9K



Superconductivity and LHC

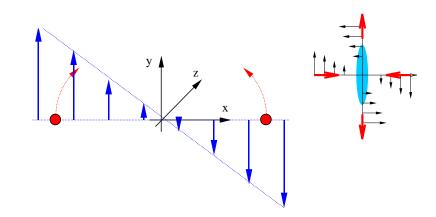
Bending the beam

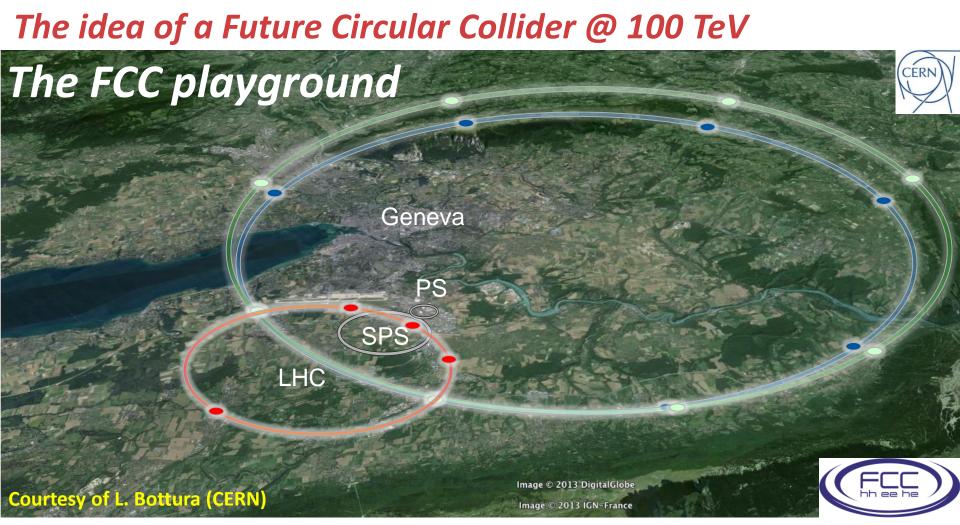
Uniform field (dipole)



Focusing the beam

Gradient field (quadrupole)

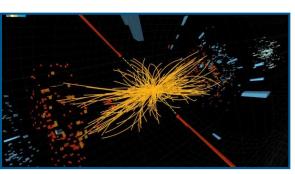




LHC 27 km, 8.33 T 14 TeV (c.o.m.) **1300 tons NbTi** HE-LHC 27 km, 20 T 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS

FCC-hh 80 km, 20 T 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, 16 T 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons NbTi

Medical Imaging and NMR spectroscopy

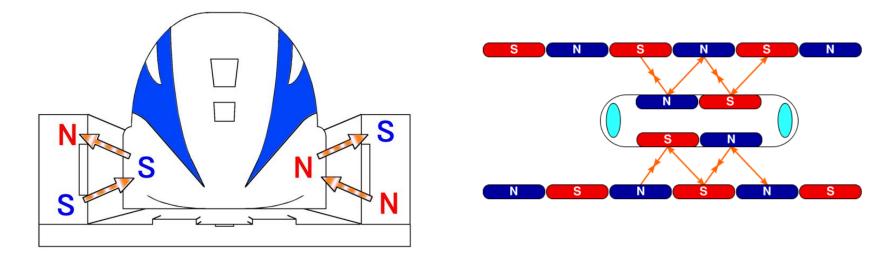


Superconductivity and LHC Higgs boson

High speed trains by magnetic levitation

High speed trains

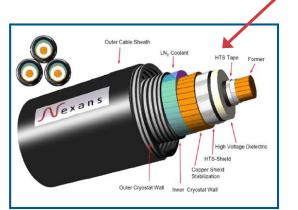
by magnetic levitation



The line between Tokyo and Osaka (550 Km) is under construction

Superconductors Tomorrow

Power distribution, generation and storage



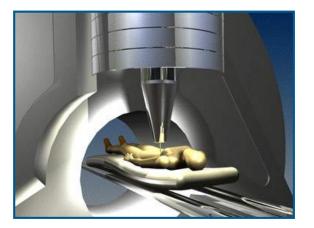
superconducting cables fault current limiters

20% from renewable sources by 2020

 $\boldsymbol{E} = \frac{1}{2} \frac{\boldsymbol{B}^2}{\mu}$

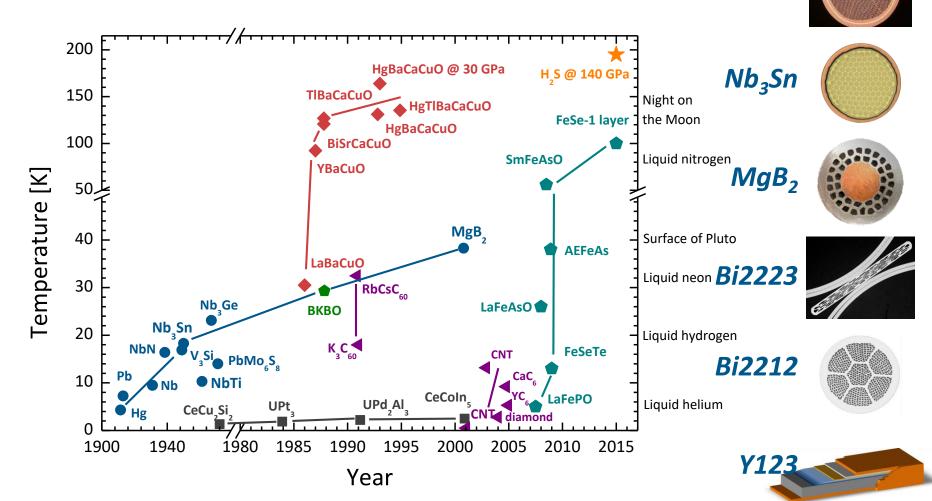
energy density of the magnetic field

New medical applications: Compact accelerators for hadron therapy



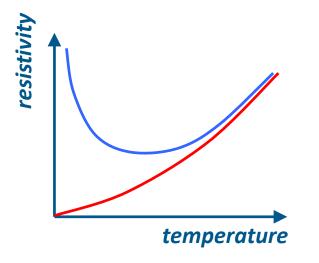
A big step to get there...

Superconductors History



Superconductors Pre-History

A great physics problem in 1900: What is the limit of electrical resistivity at the absolute zero ?



... electrons flowing through a conductor would come to a complete halt or, in other words, metal resistivity will become infinity at absolute zero.

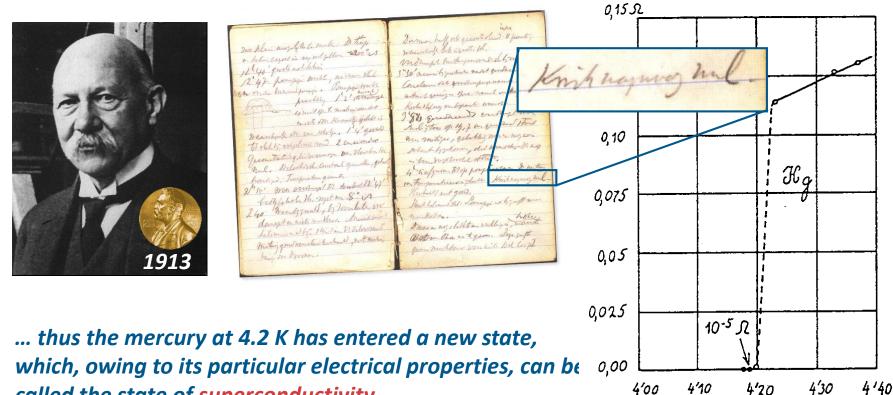
W. Thomson (Lord Kelvin)

"X-rays are an hoax"

"I have not the smallest molecule of faith in aerial navigation other than ballooning or of expectation of good results from any of the trials we hear of "

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement "

Superconductors Early History



called the state of superconductivity...

H. Kamerlingh-Onnes (1911)

Superconductors Early History

Onnes in 1913 conceived a 10 T magnet

What he pointed out:

- The impossibility of doing this with Cu cooled by liquid air (as expensive as a warship)
- The possibility of doing it with superconductor (1000 A/mm² with a Hg wire, 460 A/mm² with a Pb wire)
- A « little » problem!
- Resistance developed at 0.8 A, not 20 A
- **48 years had to go by** before the path to high field superconducting magnets was cleared

The great silence: 1914-1961

International Conference on High Magnetic Fields, Massachusetts Institute of Technology, November 1961

Who	Field	Material	Bore
Bell	6.9 T	Nb₃Sn	0.25″
Atomics Internati onal	5.9 T	Nb25Zr	0.5″
Westing house	5.6 T	Nb25Zr	0.15″

Abolish Ohm's law !

$\vec{J} = \sigma \vec{E}$ holds also for superconductors

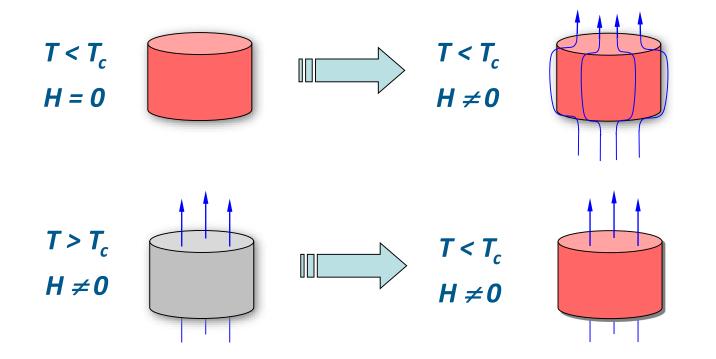
$$\rho = \mathbf{0} \implies \sigma = \infty$$

$\mathbf{J} \neq \infty$, J is finite \Rightarrow E = 0

From the Maxwell equation $\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$

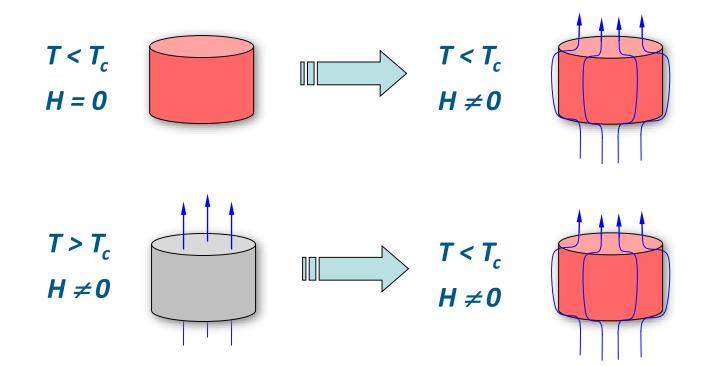
$$\vec{E} = \mathbf{0} \implies \frac{\partial \vec{B}}{\partial t} = \mathbf{0} \implies \vec{B} = const.$$

B = constant



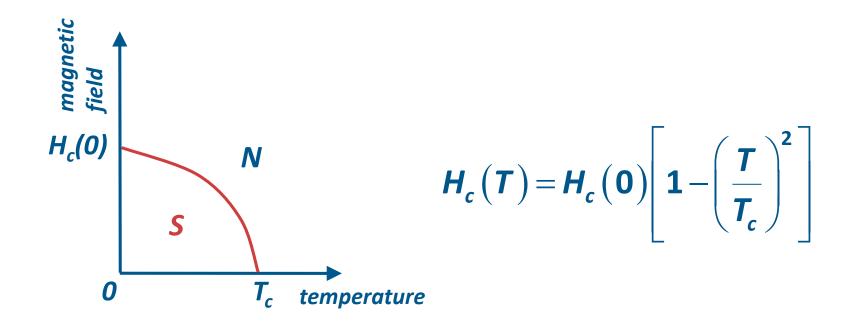
This would imply that superconductivity is not a thermodynamic state !! Some ingredients are missing...

The Meissner–Ochsenfeld effect - B = 0 !

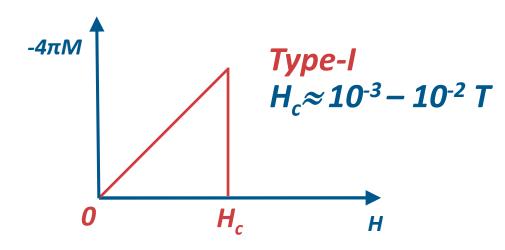


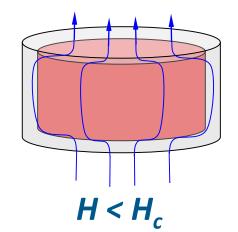
Superconductor = Perfect Conductor + Perfect Diamagnetism

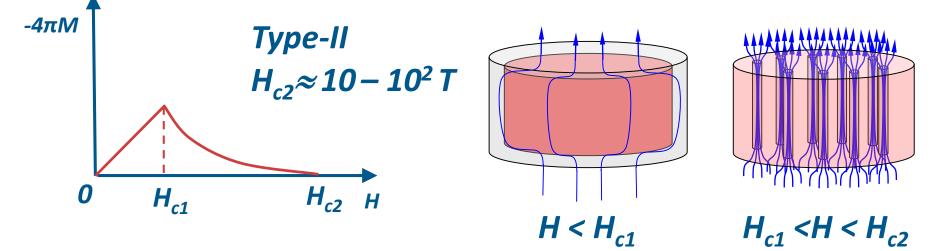
Superconducting Phase Diagram



Type-I and Type-II superconductors







 $-4\pi M = H - B$

Thermodynamics of the superconducting state

$$U(S,V,B) \implies F(T,V,B) \implies G(T,P,H)$$
Legendre transformation

The differential of the Gibbs free energy is

$$dG = VdP - SdT - \frac{1}{4\pi}BdH$$

Thermodynamics of the superconducting state

1st case: T = T', normal state, field sweep from 0 to H^{*}

$$G_N(T',H^*) - G_N(T',0) = -\frac{1}{4\pi} \int_0^{H^*} BdH = -\frac{H^{*2}}{8\pi}$$

2nd case: T = T'', superconducting state, field sweep from 0 to $H^* < H_c$ $G_s(T'', H^*) - G_s(T'', 0) = 0$

At
$$H = H_c$$
 $G_s(T, H_c) = G_N(T, H_c) = G_N(T, 0) - \frac{H_c^2}{8\pi}$

and thus $G_{s}(T,0) = G_{N}(T,0) - \frac{H_{c}^{2}}{8\pi}$

Entropy: $\Delta S @ H = 0$ and $T < T_c$

$$\boldsymbol{S} = -\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P},\boldsymbol{H}}$$

$$S_{N} - S_{s} = -\left[\frac{\partial}{\partial T}(G_{N} - G_{s})\right] = -\left[\frac{d}{dT}\frac{H_{c}^{2}}{8\pi}\right] = -\frac{1}{4\pi}H_{c}\frac{dH_{c}}{dT}$$
$$H_{c}(T) = H_{c}(0)\left[1 - \left(\frac{T}{T_{c}}\right)^{2}\right] \Rightarrow \frac{dH_{c}}{dT} < 0 \Rightarrow S_{s} < S_{N}$$

Specific heat: $\Delta c @ T_c$

$$\boldsymbol{c} = \boldsymbol{T} \left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}} \right)_{\boldsymbol{P},\boldsymbol{H}}$$

$$\boldsymbol{c}_{s} - \boldsymbol{c}_{N} = \boldsymbol{T} \left[\frac{\partial}{\partial \boldsymbol{T}} (\boldsymbol{S}_{s} - \boldsymbol{S}_{N}) \right] = \boldsymbol{T} \left[\frac{d}{dT} \left(\frac{1}{4\pi} \boldsymbol{H}_{c} \frac{d\boldsymbol{H}_{c}}{dT} \right) \right]$$

$$=\frac{T}{4\pi}\left[\left(\frac{dH_c}{dT}\right)^2+H_c\frac{d^2H_c}{dT^2}\right]$$

At
$$T = T_c$$
 $C_s - C_N \Big|_{T_c} = \frac{T_c}{4\pi} \left(\frac{dH_c}{dT}\right)^2$

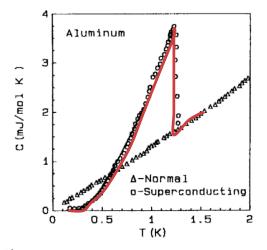
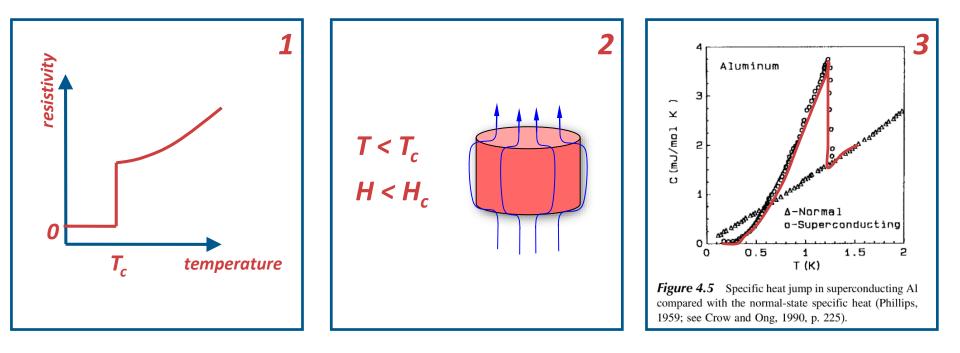


Figure 4.5 Specific heat jump in superconducting Al compared with the normal-state specific heat (Phillips, 1959; see Crow and Ong, 1990, p. 225).

If it is a superconductor, then...



Phenomenological theories: The London Theory

Drude model

$$\frac{d\vec{v}}{dt} = -\frac{e}{m} \left[\vec{E} + \frac{1}{c} \vec{v} \times \vec{h} \right] - \frac{\vec{v}}{\tau}$$

London model
$$\frac{d\vec{v}_s}{dt} = -\frac{e}{m} \left[\vec{E} + \frac{1}{c} \vec{v}_s \times \vec{h} \right]$$

$$\vec{v}_{s} = \vec{v}_{s}(x, y, z, t) \Longrightarrow \frac{d\vec{v}_{s}}{dt} = \frac{\partial\vec{v}_{s}}{\partial t} + (\vec{v}_{s} \cdot \vec{\nabla}) \vec{v}_{s} = \frac{\partial\vec{v}_{s}}{\partial t} + \vec{\nabla} \left(\frac{1}{2}v_{s}^{2}\right) - \vec{v}_{s} \times \vec{\nabla} \times \vec{v}_{s}$$

$$\frac{\partial \vec{v}_s}{\partial t} + \vec{\nabla} \left(\frac{1}{2} v_s^2 \right) - \vec{v}_s \times \vec{\nabla} \times \vec{v}_s = -\frac{e}{m} \vec{E} - \frac{e}{mc} \vec{v}_s \times \vec{h}$$

$$\frac{\partial \vec{v}_s}{\partial t} + \vec{\nabla} \left(\frac{1}{2} v_s^2 \right) + \frac{e}{m} \vec{E} = \vec{v}_s \times \left(\vec{\nabla} \times \vec{v}_s - \frac{e}{mc} \vec{h} \right)$$

Phenomenological theories: The London Theory

$$\frac{\partial \vec{v}_s}{\partial t} + \vec{\nabla} \left(\frac{1}{2} v_s^2 \right) + \frac{e}{m} \vec{E} = \vec{v}_s \times \left(\vec{\nabla} \times \vec{v}_s - \frac{e}{mc} \vec{h} \right) \quad and \ define \quad \vec{Q} = \vec{\nabla} \times \vec{v}_s - \frac{e}{mc} \vec{h}$$

Rewrite with Q + Rotor

$$\frac{\partial}{\partial t} \vec{\nabla} \times \vec{v}_s + \frac{e}{m} \vec{\nabla} \times \vec{E} = \vec{\nabla} \times \left(\vec{v}_s \times \vec{Q} \right)$$

With the help of Maxwell

$$\frac{\partial}{\partial t} \vec{\nabla} \times \vec{v}_s + \frac{e}{m} \left(-\frac{1}{c} \frac{\partial \vec{h}}{\partial t} \right) = \vec{\nabla} \times \left(\vec{v}_s \times \vec{Q} \right)$$

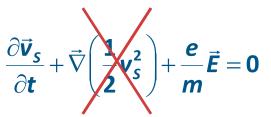
 $\frac{\partial}{\partial t}\vec{Q} = \vec{\nabla} \times \left(\vec{v}_{s} \times \vec{Q}\right)$

If at
$$t = 0$$
 $\vec{h} = 0$, $\vec{v}_s = 0 \Rightarrow \vec{Q} = 0 \Rightarrow \frac{\partial}{\partial t} \vec{Q} = 0$
 $\vec{\nabla} \times \vec{v}_s - \frac{e}{mc} \vec{h} = 0$ $\frac{\partial \vec{v}_s}{\partial t} + \vec{\nabla} \left(\frac{1}{2}v_s^2\right) + \frac{e}{m}\vec{E} = 0$

London equations

The supercurrent density is defined as $\vec{j}_s = -n_s e \vec{v}_s$

$$\vec{\nabla} \times \vec{v}_s - \frac{e}{mc}\vec{h} = 0$$



see F. London, Superfluids (1961), pp. 57-60

$$\vec{\nabla} \times \frac{m}{n_s e^2} \vec{j}_s = -\frac{\vec{h}}{c}$$

$$\frac{\partial \vec{v}_s}{\partial t} + \frac{e}{m}\vec{E} = 0$$
$$\frac{\partial}{\partial t}\frac{m}{n_s e^2}\vec{j}_s = \vec{E}$$

$$\vec{\nabla} \times (\Lambda \vec{j}_s) = -\frac{\vec{h}}{c}$$

1st London equation

$$\frac{\partial}{\partial \boldsymbol{t}} \left(\boldsymbol{\Lambda} \boldsymbol{\vec{j}}_{\boldsymbol{s}} \right) = \boldsymbol{\vec{E}}$$

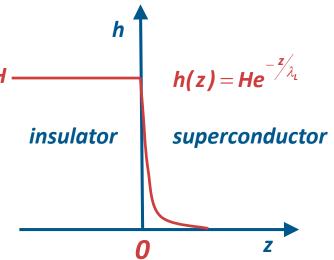
2nd London equation

London equations

Combine
$$\vec{\nabla} \times (\Lambda \vec{j}_s) - = -\frac{\vec{h}}{c}$$
 and $\vec{\nabla} \times \vec{h} = \frac{4\pi}{c}\vec{j}$
 $-\frac{\Lambda c^2}{4\pi}\vec{\nabla} \times \vec{\nabla} \times \vec{h} = \vec{h}$
 $-\frac{\Lambda c^2}{4\pi} [\vec{\nabla}(\vec{\nabla} \cdot \vec{h}) - \nabla^2 \vec{h}] = \vec{h}$
 $\vec{h} - \lambda_L^2 \nabla^2 \vec{h} = 0$

with
$$\lambda_L = \sqrt{\frac{\Lambda c^2}{4\pi}} = \sqrt{\frac{m^* c^2}{4\pi n_s e^{*2}}}$$

penetration depth



Bibliography

Applications & Historical background

Rogalla & Kes 100 Years of Superconductivity

Phenomenology Fosshein & Sudbø Superconductivity: Physics and Applications Chapter 1

London Equations London Superfluids – Macroscopic Theory of Superconductivity Chapter B