

Superconductivity and its applications

Lecture 11

Carmine SENATORE

Group of Applied Superconductivity Department of Quantum Matter Physics University of Geneva, Switzerland

Previously, in lecture 10

Superconducting magnets, field shapes and winding configurations Transverse fields (particle accelerators)

Previously, in lecture 10 Harmonic generation in real coils

Previously, in lecture 10

Superconducting magnets, field shapes and winding configurations Transverse fields (particle accelerators)

Previously, in lecture 10 Mechanical stresses on a SC wire in a magnet

In a winding adjacent turns will press on each other and develop a radial stress σ_r which modifies the hoop stress σ_{θ}

Previously, in lecture 10 Strain-induced changes in the critical current *Effects of the longitudinal strain*

Previously, in lecture 10 Strain effects in Nb₃Sn wires: lattice parameters and I_c

Irreversible strain limit in Nb₃Sn wires

Industrial fabrication of Nb₃Sn wires

Three technologies have been developed at industrial scale

From I_c vs. strain to I_c vs. stress

Bronze Route wire

Bronze Route, Internal Sn and PIT Reversible behaviour and irreversible limit

Microtomography and Analysis of Voids

Bronze wire

Experiments performed @ ESRF - Grenoble

Virtual longitudinal cut

Microtomography: Visualize the Voids

Bronze wire

2D view of voids

3D view of voids

Void morphology and irreversible limit

Bronze wire $\sigma_{irr} = 330 MPa$

Internal Sn $\sigma_{irr} = 210 MPa$

PIT $\sigma_{irr} = 120 MPa$

From the wire to the magnet

Superconducting magnet

Superconducting wire

Reinforcing elements and structure

Insulation and filling materials

(Coolant)

Cooling methods for superconducting magnets

The winding pack is dense, with no cryogen penetration, resulting in overall current densities in the winding significantly greater than those of bath-cooled cryostable magnets

	Wet Magnets							
Cooling Method	Cooling- $Conductor$ $Coupling$	Heat Transfer						
Bath-cooled, "cryostable"	Good; entire conductor	Convective						
Bath-cooled, "adiabatic"	Essentially nonexistent	Conductive						
Force-cooled, "cryostable"	Good; entire conductor	Convective						
Force-cooled, "quasi-stable"	Close proximity, but indirect	Conductive						
Dry Magnets								
Cryocooled, "quasi-stable"	Indirect	Conductive						

Cable-In-conduit, as for the ITER magnet

Dense winding, as for the accelerator magnets

Stability criteria for superconducting magnets

The power density equation governing the temperature of a superconductor unit volume is

In an adiabatic magnet the last term can be neglected and the stability condition is defined by

$$\frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x} \right) + \rho J^2 + p_{initial} = 0$$
Conduction Joule Heating Thermal disturbance

Stability criteria for superconducting magnets

Table 6.2: Heat Capacities of Substances in Superconducting Magnets

Superconductor	\Leftarrow NbTi($T_c = 9.8 \text{ K}$) \Longrightarrow							
Operating	←							
Temperature	\leftarrow	\Leftarrow YBCO $(T_c = 93 \text{ K})$						
Range			$C_p($	$T) [J/cm^3]$	³ K]			
Material	$2 \mathrm{K}$	$4\mathrm{K}$	$10\mathrm{K}$	$20\mathrm{K}$	$30\mathrm{K}$	$50\mathrm{K}$	$90\mathrm{K}$	
Copper	0.00025	0.00089	0.0076	0.067	0.236	0.857	2.07	
NbTi	0.00018	0.0014	0.022	—				
MgB_2	0.000040	0.00032	0.00181	0.0081	0.0242		—	
YBCO	0.000086	0.0007			0.120	0.454	1.12	
Stainless steel	0.0014	0.003	0.01	0.04	0.1	0.4	1.5	
Epoxy	0.00008	0.00066	0.014	0.080				

Table 6.3: Thermal Conductivities of Substances in Superconducting Magnets

Superconductor	\Leftarrow NbTi($T_c = 9.8 \text{ K}$) \Longrightarrow						
Operating	\Leftarrow	\iff MgB ₂ ($T_c = 39$ K) \implies					
Temperature	\Leftarrow		YBC	$CO(T_c = 9$	93 K)		\Rightarrow
Range			k(1)	^r) [W/cm	K]		
Material	2 K	4 K	10 K	$20\mathrm{K}$	30 K	$50\mathrm{K}$	90 K
Copper	2	4.2	8.5	15	15	9	5
NbTi	0.0006	0.0017	0.0057	—	—	_	_
MgB_2			0.024	0.068	0.110	—	—
YBCO	0.020	0.080	0.120	0.225	0.250	0.240	0.125
Stainless steel	0.001	0.0027	0.009	0.02	0.035	0.057	0.088
Epoxy	0.0001	0.0003	0.0012	0.0027	0.004	0.006	0.007

Because of the low specific heat at low temperatures, a high thermal conductivity of the superconducting composite is necessary to guarantee the stability

Thermal conductivity of copper is orders of magnitude higher compared to superconducting materials

For this reason copper is always present in the layout of a superconducting wire

Thermal instabilities and Flux jumps (déjà-vu)

Flux motion after a thermal disturbance can further reduce the already low specific heat at low temperatures

If ΔQ_{ext} is the initial perturbation, the heat balance including the heat generated by the flux flow is

Because of the energy stored in the current, the effective specific heat is

$$c_{eff} = \frac{\Delta Q_{ext}}{\Delta T} = c - \frac{\mu_0 J_c^2 a^2}{3 \left(T_c - T_{op} \right)}$$

 c_{eff} can become zero \Rightarrow The solution is to reduce the size of the filaments

Disturbance spectra

Stability margin vs. Disturbance energy

The stability margin Δe is the maximum energy density that a composite superconductor carrying operating current I_{op} can absorb and still remain fully superconducting

Table 6.4: Selected	Values	of T_{op} ,	$\Delta T_{op},$	and	Δe_h	for	LTS	and	HTS
---------------------	--------	---------------	------------------	-----	--------------	-----	-----	-----	-----

	LTS		HTS				
$T_{op} \left[\mathbf{K} \right]$	$[\Delta T_{op}(I_{op})]_{st}$ [K]	$\Delta e \ [J/cm^3]$	$T_{op} \left[\mathrm{K} \right]$	$[\Delta T_{op}(I_{op})]_{st}$ [K]	$\Delta e \ [J/cm^3]$		
2.5	0.3	1.2×10^{-4}	4.2	25	1.6		
4.2	0.5	0.6×10^{-3}	10	20	1.8		
4.2	2	4.3×10^{-3}	30	10	3.7		
10	1	9×10^{-3}	70	5	8.1		

Hot spot and hot spot temperature

A magnet quench is initiated over a small winding volume, the so-called hot spot The entire stored energy of the magnet may be dissipated over this hot spot, with the permanent damage of the magnet

The goal of any magnet protection is to limit the final temperature T_f below 300 K in case of quench

The stored magnetic energy E_m in a solenoid is

$$E_m = \frac{1}{2}LI^2$$

The inductance L of a solenoid (a_1, α, β) with N turns is

$$L = \mu_{\circ} a_{\mathbf{I}} \mathcal{L}(\alpha, \beta) N^2$$

The axial center field B₀ is given by

$$B_{\circ} = rac{\mu_{\circ}NI}{2a_{1}(lpha-1)eta}F(lpha,eta)$$
 with

 $F(\alpha,\beta) = \beta \ln \left(\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}}\right)$

Hot spot and hot spot temperature (2)

For a solenoid (a, α , β), E_m may be related to its B_0 by

$$E_m = \frac{4a_1^3(\alpha - 1)^2\beta^2 \mathcal{L}(\alpha, \beta)}{F^2(\alpha, \beta)} \left(\frac{B_o^2}{2\mu_o}\right)$$

The total volume of the hot spot (resistive zone) V_r is given by

$$V_r = f_r V_w = f_r 2\pi a_1^3 (\alpha^2 - 1)\beta$$

where V_w is the winding volume and f_r is the fraction of the hot-spot volume in the winding

If the magnet's total magnetic energy E_m is converted to heat adiabatically in the hot spot only, the average thermal energy density e_{mr} of the hot spot is given by

$$e_{mr} \equiv \frac{E_m}{V_r} = \frac{2(\alpha - 1)\beta \mathcal{L}(\alpha, \beta)}{f_r \pi (\alpha + 1)F^2(\alpha, \beta)} \left(\frac{B_o^2}{2\mu_o}\right)$$

What must be the minimum size of a hot spot volume in a solenoid to meet a requirement of $T_f \leq 300K$ is a key question of protection issue

Adiabatic heating under current discharge

How to estimate the hot spot temperature and design the winding to keep $T_f \leq 300K$

The heat balance per unit of volume is

 $J^2(t)\rho(T)dt = C(T)dT$

Rearranging and integrating

$$\int_{0}^{\infty} J^{2}(t) dt = J_{op}^{2} t_{D} = \int_{0}^{T_{f}} \frac{C(T)}{\rho(T)} dT = U(T_{f})$$

t_D is a characteristic time for the current decay after a quench

To keep T_f low, t_D has to be short (J_{op} is given) The shorter is t_D , the larger must be the hot spot volume

Fig. 9.1. The function U(0) for various conductors and for a typical small magnet winding containing 47 per cent copper, 23 per cent NbTi, and 30 per cent resin. The dotted line shows the approximation $U(0) \sim \theta^4$.

Hot spot volume fraction and temperature

		$T_i =$	$4 \mathrm{K}$	$T_i = 80 \text{ K}$		
B_{\circ}	e_m	$T_f = 200 \mathrm{K}$ $T_f = 300 \mathrm{K}$		$T_f = 200 \mathrm{K}$	$T_f = 300 \mathrm{K}$	
[T]	$[\mathrm{J/cm}^3]$	f_r ((%)	$f_r(\%)$		
1.5	1.02	0.27	0.14	0.31	0.15	
3.0	4.06	1.1	0.57	1.2	0.62	
6.0	16.2	4.3	2.3	5.0	2.5	
12	65.0	17	9.1	20	9.9	
20	180	48	25	55	27	
25	282	74	40	87	43	
30	406	107	57	125	62	

Table 8.1: Hot Spot Volume Fraction, $f_r,$ vs. Hot-Temperature, T_f Solenoid ($\alpha\!=\!1.5,\;\beta\!=\!2.0)$ of B_\circ 1.5 T–30 T

Hot spot volume fraction and temperature (2)

Table 8.2: "Permissible" Limits of T_f for Selected Materials

$T [\mathrm{K}]$	Remarks
≤ 200	Considered acceptable for LTS and HTS winding
320	Lowest melting point among indium solders
335	Cu-laminated YBCO: no I_c -degradation [8.12]
370	Cu-laminated YBCO: slight I_c -degradation [8.12]
380	Limits of Formvar insulation and Stycast 2850
400	Paraffin melts
430	Indium melts
493	50Sn-50Pb solder melts
720	Bi2223-Ag: no I_c -degradation [8.12]
800	Bi2223-Ag: I_c -degradation [8.12]

A quench in addition to damaging the winding thermally, may also do so mechanically by inducing localized strains.

Minimum Propagating Zone and Minimum Quench Energy

A thermal disturbance Q_{in} induces a temperature rise above T_c over a length l

The minimum length needed for this normal zone to propagate (for heat generation to exceed cooling) is defined as the minimum propagation zone I_{MPZ}

$$J^{2}\rho AI_{MPZ} = 2\kappa A \frac{T_{cs} - T_{op}}{I_{MPZ}}$$

Minimum Propagating Zone

$$I_{MPZ} = \sqrt{\frac{2\kappa \left(T_{cs} - T_{op}\right)}{J^2 \rho}}$$

$$MQE = A \int_{I_{MPZ}} dz \int_{T_{op}}^{T_{cs}} dT C(T)$$

 $C\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x}\right) + \rho J^{2} + p_{initial}$ Thermal Inertia

How to make a large MPZ and MQE

$$I_{MPZ} = \sqrt{\frac{2\kappa \left(T_{cs} - T_{op}\right)}{J^2 \rho}}$$

- make thermal conductivity *k* large
- make resistivity *ρ* small

- Superconductors have high ho and low κ
- Copper have low ρ and high κ
- Mix copper and superconductor in a filamentary composite wire
- Superconductor in fine filaments for an intimate mixing

Fig. 5.13. Comparison between some experimental measurements of quench energy (points) and the predictions of Fig. 5.12 (solid line).

Normal Zone Propagation Velocity

Once a non-recovering normal zone is formed, it is desirable to make the normal-zone propagation (NZP) velocity "fast", to enlarge its f_r and limit the hot spot temperature

An expression for v_{NZ} can be derived by formulating two coupled diffusion equations for the normal- and superconducting zone

$$c_n \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\kappa_n \frac{\partial T}{\partial z} \right) + p_{\text{diss}} \quad \text{(n.c.)};$$
$$c_s \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\kappa_s \frac{\partial T}{\partial z} \right) \qquad \text{(s.c.)},$$

By applying a coordinate transformation $z' = z - v_{Nz}t$, we obtain

$$v_{nz}c_n\frac{dT}{dz'} + \kappa_n\frac{d^2T}{dz'^2} + p_{\text{diss}} = 0 \quad (\text{n.c.});$$
$$v_{nz}c_s\frac{dT}{dz'} + \kappa_s\frac{d^2T}{dz'^2} = 0 \quad (\text{s.c.}).$$

Normal Zone Propagation Velocity

By solving the coupled equations for v_{NZ} , we obtain

$$\boldsymbol{v}_{NZ} = \sqrt{\frac{\boldsymbol{p}_{diss} \boldsymbol{\kappa}_n}{\boldsymbol{C}_n \boldsymbol{C}_s \left(\boldsymbol{T}_{cs} - \boldsymbol{T}_{op}\right)}}$$

that can be rewritten as

$$\boldsymbol{v}_{NZ} = \frac{J}{C} \sqrt{\frac{\rho \kappa}{T_{cs} - T_{op}}}$$

Superconductor	Environment	T_{op} [K]	B_{ex} [T]	$J [{\rm A/mm^2}]$	$U_{\ell} [\mathrm{mm/s}]$
Nb-Zr [8.26]	Liquid helium	4.2	0	100*	933
(single strand;				1000*	9330
no matrix metal)			6	100*	5345
		8.8	0	100*	1215
NbTi [8.36]	Liquid helium	4.2	0	420†	"Recovery"
(multifilamentary				840†	6800
composite)			4	420†	4660
				840†	18600
Nb ₃ Sn [8.39]	Adiabatic	4.2	0	630†	1830
(multifilamentary			6	315†	1490
composite)				630†	3720
Nb ₃ Sn [8.55]	Quasi-adiabatic	12	0	700†	510
(tape)		5.5	5	470†	525
Bi2223-Ag [8.55]	Quasi-adiabatic	40	0	230†	2
YBCO [8.64]	Adiabatic	46	0	$10 - 15^{\dagger}$	2-8
(coated) [8.69]	Adiabatic	77	0	3–15†	3–10
[8.73]	Adiabatic	77	0	65†	2.5
				115†	9
		40	0	115†	38
MgB_2 [8.70]	Quasi-adiabatic	4.2	4	26†	No NZP
(single strand;				78†	930
iron matrix)				212†	6000

Table 8.5: Selected Measured U_ℓ for LTS and HTS, Bare and Composite

MPZ and NZPV

$$I_{MPZ} = \frac{1}{J} \sqrt{\frac{2\kappa}{\rho} \left(T_{cs} - T_{op} \right)}$$

$$\boldsymbol{v}_{NZ} = \frac{J}{C} \sqrt{\frac{\rho \kappa}{T_{cs} - T_{op}}}$$

Specific Heat and Thermal Conductivity

Temperature and Field dependence for a Bronze Route Nb₃Sn wire

Specific heat is dominated by phonons and thus is weakly affected by the magnetic field

Thermal conductivity is dominated by electrons and thus is strongly affected by the magnetic field

How to protect a magnet in case of quench Active Protection Technique: Detect-and-Dump

A simple protection circuit with a switch S and external dump resistor R_D When the start of a quench is detected, S opens and the current decays through R_D If we make R_D larger than the internal quench resistance, it will dominate the current decay giving

$$I = I_{op} e^{-R_D t/L} = I_{op} e^{-t/t_D}$$

How to detect a quench - Basic Bridge Circuit

V_{out} can be rewritten as

$$V_{out}(t) = L_1 \frac{dI(t)}{dt} + rI(t) - \frac{R_1}{R_1 + R_2} \left[L_1 \frac{dI(t)}{dt} + rI(t) + L_2 \frac{dI(t)}{dt} \right]$$

How to detect a quench - Basic Bridge Circuit

We design the circuit to make $V_{out}(t)$ proportional only to rI(t)

$$\left(\frac{R_2}{R_1+R_2}\right)L_1\frac{dI(t)}{dt} - \left(\frac{R_1}{R_1+R_2}\right)L_2\frac{dI(t)}{dt} = 0$$

This implies $R_2L_1 = R_1L_2$. In the case of quench we detect

$$V_{out}(t) = \left(\frac{R_2}{R_1 + R_2}\right) rI(t)$$

Bibliography

Wilson Superconducting Magnets Chapter 5 Chapter 9

Iwasa Case Studies in Superconducting Magnets Chapter 4 Section 2 Chapter 6 Sections 1 & 2 Chapter 8 Sections 1, 2, 4 & 8