

Superconductivity and its applications

Lecture 10

Carmine SENATORE

Group of Applied Superconductivity Department of Quantum Matter Physics University of Geneva, Switzerland

Previously, in lecture 9 HTS materials for applications

Copper oxides with highly anisotropic structures, <u>texturing</u> (grain orientation) is required in technical superconductors

	<i>T_c</i> [K]	texture			Produced by Powder-In-Tube method Ag matrix material Tape geometry to achieve c-axis texturing I _c depends on the magnetic field orientation Produced by Powder-In-Tube method Ag matrix material Round wire, spontaneous radial texturing of the c-axis Isotropic properties of I _c
Bi2223	110	c-axis	988		
Bi2212	91	c-axis (radial)			
Y123	92	biaxial			
					Coated conductors Y123 layer deposited on a metallic substrate Texturing along c and in the ab plane I, depends on the magnetic field orientation

Previously, in lecture 9

Superconducting magnets, field shapes and winding configurations Solenoids (NMR, MRI and laboratory magnets)

Previously, in lecture 9

Notched solenoids and homogeneity along z

General guidelines for magnet design

Subdivide the winding into a number of concentric sections to improve the efficiency of superconductor utilization

All sections take the same current, but each section has its own J, α and β

Each section operates at the maximum current density allowed by the local field level

Transverse fields: accelerator magnets

Sketch of coils to generate transverse fields

Transverse fields: accelerator magnets

Bending the beam

Uniform field (dipole)

Focusing the beam

Gradient field (quadrupole)

Infinite cylinders carrying uniform J

$$B=\mu_0\frac{Jr}{2}$$

Two cylinders with their centres spaced apart by d and carrying uniform J but oppositely directed

$$B_{y} = \frac{\mu_{0}J}{2} \left[-r_{1}\cos\theta_{1} + r_{2}\cos\theta_{2} \right] = -\mu_{0}\frac{Jd}{2}$$
$$B_{x} = \frac{\mu_{0}J}{2} \left[r_{1}\sin\theta_{1} - r_{2}\sin\theta_{2} \right] = 0$$

B_y is uniform over the whole aperture Perfect dipole field

Multipole magnets

It can be demonstrated that:

A cylindrical current sheet, infinite along z, carrying a $\cos\theta$ current distribution generates a perfect dipole field

A cylindrical current sheet, infinite along z, carrying a $cos2\theta$ current distribution generates a perfect quadrupole field

Intersecting ellipses carrying uniform J

Perfect dipole

$$B_{y} = -\mu_{0} \frac{Jdc}{(b+c)}$$
$$B_{x} = 0$$

Perfect quadrupole

$$B_{y} = \frac{\mu_{0}J(b-c)}{b+c}y$$
$$B_{x} = \frac{\mu_{0}J(b-c)}{b+c}x$$

Uniform gradient $g = \frac{\mu_0 J(b-c)}{b+c}$

Real coil configurations for multipole magnets

Approximation for the ideal dipole current distribution

Approximation for the ideal quadrupole current distribution

Harmonic generation in real coils

Magnetic field =

dipole field

+ sextupole term + ...

LHC dipoles

LHC quadrupoles

Toroidal fields

In a 'perfect' torus the distribution of current density is perfectly uniform in the ϕ direction

No field in the r- or z-directions

By applying Ampere's law

$$B_{\varphi}rd\varphi = B_{\varphi}2\pi r = \mu_0NI$$

$$B_{\varphi} = \frac{\mu_0 NI}{2\pi r}$$

A practical torus is constructed from a number of discrete circular coils

Toroidal fields: fusion magnets

ITER Reactor

Toroidal windings produce fields in which the magnetic lines of force close up on themselves

It is difficult for charged particles to diffuse in directions perpendicular to the magnetic field lines

Closed-line configurations provide good confinement fields for the hot ionized plasmas which are needed to produce controlled thermonuclear fusion

Introduction to Forces and Stresses in a Magnet

The magnetic field is $B_0 = \mu_0 J d$

The expression of the magnetic force density (per unit of volume) is

 $f = J \times B$

The average field in the winding is $\frac{B_0}{2}$

The (radial) force on a winding volume element is

Hoop stress in a ring

A ring carrying a current I in a field B

The total radial magnetic force on the ring is

$$F_r = \int_{loop} dv f = \int dv J \times B$$

 $= 2\pi R I B$

Hoop stress in a ring

A ring carrying a current I in a field B

Hoop stress levels above 100 MPa are common, the NHMFL 32 T magnet operates at 400 MPa

Electromagnetic stresses in a finite solenoid

In a winding adjacent turns will press on each other and develop a radial stress σ_r which modifies the hoop stress σ_{θ}

Considering the solenoid as a continuous uniform medium, from the Hooke's law

$$\sigma_r = \frac{E}{1 - v^2} \left(\frac{du}{dr} + v \frac{u}{r} \right) \quad and \quad \sigma_\theta = \frac{E}{1 - v^2} \left(\frac{u}{r} + v \frac{du}{dr} \right)$$

where u is the local displacement in the radial direction, E is the Young's modulus and v is the Poisson's ratio

The condition for equilibrium between radial stress σ_r , hoop stress σ_{θ} and body force BJr is given by the equation

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{du}{dr}\right) - \frac{u}{r^2} = \frac{1 - v^2}{E}BJ$$

Electromagnetic stresses in a finite solenoid

Example: for B_0 of the order of 10 T, on the winding σ_{θ} of > 200 MPa (> 2000 bar)

Electromagnetic stresses in an accelerator dipole

B₀

vectors of electromagnetic force per unit volume

magnetic lines of force

For B₀=6T and (a+b)/2=100 mm

F_x=200 tons/m

In straight-sided coils such as dipoles and quadrupoles the conductor is unable to support the magnetic forces in tension

How to make the dipole able to sustain the stress

How to make the dipole able to sustain the stress

• Clamping the winding in a solid collar

Wire cabling for the ITER coils

CICC = Cable-In-Conduit Conductor

Thermal precompression of the superconductor

Strain-induced changes in the critical current

Effects of the longitudinal strain

Strain-induced changes in the critical current

Effects of the longitudinal strain

Wire cabling for the ITER coils

Reversible variation of I_c under strain matters

Because of the thermal precompression, wires in a CICC experience an effective axial compressive strain ranging between -0.6% and -0.8%

CICC = Cable-In-Conduit Conductor

The performance of the superconductor is limited to ~40% of the maximum achievable current

Reversible strain effects

Why superconducting properties depend on strain

Under strain the crystal structure deforms and this induces change both in the phonon spectrum and the electronic bands and thus on T_c and B_{c2}

Reversible strain effects in Nb₃Sn wires

HYDROSTATIC Change of the cell volume

Precompression induced by cooling to low temperature has two components

Cubic-shaped stress-free cell for Nb₃Sn

Reversible strain effects in Nb₃Sn wires: lattice parameters Bronze route wire: Nb₃Sn lattice parameters vs <u>uniaxial</u> strain @ 4.2 K

Lattice parameters and I_c under axial strain

Bibliography

Wilson Superconducting Magnets Chapter 3 Chapter 4

Iwasa Case Studies in Superconducting Magnets Chapter 3 Section 3

Ekin Experimental Techniques for Low-Temperature Measurements Chapter 10 Section 5

Papers cited in the slides